MOLECULAR DYNAMIC SIMULATION OF PEPTIDE POLYELECTROLYTES

I. M. Neelov, A. A. Mistonova, A. A. Hvatov, V. V. Bezrodny


Read the full article  ';

Abstract

The paper deals with investigation of the conformational properties of some charged homopolypeptides in dilute aqueous solutions by computer simulation. A method of molecular dynamics for the full-atomic models of polyaspartic acid and polylysine with explicit account of water and counter-ions is used for this purpose. For systems containing these polypeptides we calculated time trajectories and the size, shape, distribution functions and time correlation functions of inertia radius and the distances between the ends of peptide chains. We have also calculated the solvatation characteristics of considered polyelectrolytes. We have found out that polyaspartic acid in dilute aqueous solution has more compact structure and more spherical shape than polylysine. We have shown that these differences are due to different interaction between the polypeptides and water molecules (in particular, the quality and quantity of hydrogen bonds formed by these peptides with water), and the difference in an amount of ion pairs formed by the charged groups of the peptides and counter-ions. The obtained results should be taken into account for elaboration of new products based on the investigated peptides and their usage in various industrial and biomedical applications.


Keywords: polyelectrolytes, peptides, computer simulation, molecular dynamics method

References
1.     Oosawa F. Polyelectrolytes. New York: Marcel Dekker, 1971. 160 p.
2.     Dobrynin A.V. Solutions of charged polymers // Polymer Science: A Comprehensive Reference, 2012. V. 1. P. 81−132.
3.     СоловьевВ.С., Успенская М.В., Сиротинкин Н.В. Полимерные водопоглощающие композиции с повышенной прочностью // Изв. вузов. Приборостроение. 2010. Т. 53. №4. С. 63–65.
4.     Зацепин И.Ю., Соловьев В.С. Сорбция ионов металлов полимерными композитами // Научно-технический вестник СПбГУ ИТМО. 2008. № 4 (49). С. 235–237.
5.     Rivera G.R, Alonso M.J., Torres D. Poly-L-asparagine nanocapsules as anticancer drug delivery vehicles // European Journal of Pharmaceutics and Biopharmaceutics. 2013. V. 85. N 3 part A. P. 481–487.
6.     Chekli L., Phuntsho S., Shon H.K., Vigneswaran S., Kandasamy J., Chanan A. A review of draw solutes in forward osmosis process and their use in modern applications // Desalination and Water Treatment. 2012. V. 43. N 1-3. P. 167−184.
7.     Ennari J., Neelov I., Sundholm F. Estimation of the ion conductivity of a PEO-based polyelectrolyte system by molecular modeling // Polymer. 2001. V. 42. N 19.P. 8043–8050.
8.     Ennari J., Neelov I., Sundholm F. Molecular dynamics simulation of the structure of PEO based solid polymer electrolytes // Polymer. 2000. V. 41. N11. P. 4057–4063.
9.     EnnariJ.,Elomaa M., NeelovI., Sundholm F.  Modeling of water-free and water containing solid polyelectrolytes // Polymer. 2000. V. 41. N 3. P. 985–990.
10.  Ennari J., Neelov I., Sundholm F. Molecular dynamics simulation of the PEO sulfonic acid anion in water // Computational and Theoretical Polymer Science. 2000. V. 10.N5. P. 403–410.
11.  Sulatha M.S., Natarajan U. Origin of the difference in structural behavior of poly(acrylic acid) and poly(methacrylic acid) in aqueous solution discerned by explicit-solvent explicit-ion MD simulations // Industrial and Engineering Chemistry Research. 2011. V. 50. N 21. P. 11785−11796.
12.  Ramachndran S., Katha A.R., Kolake S.M., Jung B., Han S. Dynamics of dilute solutions of poly (aspartic acid) and its sodium salt elucidated from atomistic molecular dynamics simulations with explicit water // Journal of Physical Chemistry B. 2013. V. 117. N 44. P. 13906–13913.
13.  Chemistry Software, HyperChem, Molecular Modeling. Режим доступа: http://www.hyper.com/ свободный. Яз.англ. (дата обращения 20.06.14).
14.  Hess B., Kutzner C., Spoel D., Lindahl E.GRGMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation// Journal of Chemical Theory and Computation. 2008. V. 4. N 3. P. 435–447.
15.  Hornak V., Abel R., Okur A., Strockbine D., Roitberg A., Simmerling C.Comparison of multiple amber force fields and development of improved protein backbone parameters // Proteins: Structure Function and Genetics. 2006. V. 65. N 3. P. 712–725.
16.  Неелов И.М., Маркелов Д.А., Фалькович C.Г., Ильяш М.Ю., Округин Б.М., Даринский А.А. Математическое моделирование лизиновых дендримеров. Температурныезависимости// Высокомолекулярныесоединения. 2013. Т. 55. № 7. С. 963–970.
17.  Falkovich S., Markelov D., Neelov I., Darinskii A. Are structural properties of dendrimers sensitive to the symmetry of branching? Computer simulation of lysine dendrimers // Journal of Chemical Physics. 2013. V. 139. N 6. Art. N 064903.
18.  Neelov I., Falkovich S., Markelov D., Paci E., Darinskii A., Tenhu H. Molecular Dynamics of Lysine Dendrimers. Computer Simulation and NMR / In:  Dendrimers in Biomedical Applications. London, Royal Society of Chemistry, 2013. P. 99–114.
19.  Neelov I.M., Janaszewska A., Klajnert B., Bryszewska M., Makova N., Hicks D., PearsonH., Vlasov G.P., Ilyash M.Yu., Vasilev D.S., Dubrovskaya N.M., Tumanova N.L., Zhuravin I.A., Turner A.J., Nalivaeva N.N. Molecular properties of lysine dendrimers and their interactions with αb-peptides and neuronal cells// CurrentMedical Chemistry. 2013. V. 20. N 1. P. 134–143.
20.  Horkay F., Hecht A.M., Geissler E. Similarities between polyelectrolyte gels and biopolymer solutions // Journal of Polymer Science, Part B: Polymer Physics. 2006. V. 44. N 24. P. 3679−3686.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика