Y. A. Ignatieva, M. V. Uspenskaya, O. V. Borisov, R. O. Olekhnovich, R. A. Evseev, K. N. Kasanov

Read the full article  ';
Article in Russian


The polymer compositions on the base of acrylic derivatives and bentonite particles modified by silver ions with various share and dispersion are received and studied by radical polymerization in the water. Partially neutralized acrylic acid, acrylamide and methylene-bis-acrilamide and particles of bentonite with fraction 0 - 0,05 mass.% are chosen as initial substances. The influence of bentonite concentration on absorbing characteristics of polymer materials in the distilled water is shown. It is demonstrated that the increase of bentonite fraction up to 5 mass.% leads to the rise of degree of equilibrium swelling by 1,5 – 2 times in comparison with an unfilled polymer matrix. The acrylic nanocompositions with a mass fraction of bentonite equal to 0,01 mass.% possess the greatest kinetic characteristics. Kinetic dependences of new composite materials swelling in physiological solution from a filler dispersion part are investigated. It is shown that in high dispersion (with particle size less than 0,25 mm) a part of mineral–containing filler equal to 1 mass.% leads to significant increase in values of equilibrium swelling degree in comparison with an unfilled sample (by 1,5 times). The effect of polyelectrolyte suppression of polymer composition swelling in physiological solution is studied. It results in values reduction of equilibrium swelling degree in comparison with these values in the distilled water. Application prospects for the received compositions are shown at bandages creation for wounds treatment of various etiologies. Research results are recommended for usage in medical practice for optimization of wound process march.

Keywords:  cross-linked copolymers, acrylic polymers, hydro-gels, swelling, sorption, bentonite, silver

Acknowledgements. The work was partially financially supported by the Government of the Russian Federation (grant 074- U01).

1.     Luk'yanov G.N., Uspenskaya M.V. Kolichestvennoe opisanie nelineinoi dinamiki poristoi akrilovoi tonkoi plenki [Quantitative description of nonlinear dynamics in the porous acrylic thin film]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 2 (78), pp. 84–87.
2.     Budtova T.V., Suleimenov I.E., Frenkel S.Ya. High-swelling polymer hydrogels: certain present-day problems and prospects. Russian Journal of Applied Chemistry, 1997, vol. 70, no. 4, pp. 507–516.
3.     Polotsky A.A., Plamper F.A., Borisov O.V. Collapse-to-swelling transitions in pH- and thermoresponsive microgels in aqueous dispersions: the thermodynamic theory. Macromolecules, 2013, vol. 46, no. 21, pp. 8702–8709. doi: 10.1021/ma401402e
4.     Itin A.L., Lukin S.B., Uspenskaya M.V., Soloviev V.S. Issledovanie opticheskikh svoistv akrilovogo gidrogelya dlya sistem indikatsii zagryaznenii [Study of optical properties of acrylic hydrogel used in pollutants display systems]. Izv. vuzov. Priborostroenie, 2012, vol. 55, no. 7, pp. 85–90.
5.     SanduT., SârbuA., ConstantinF., VulpeS., IovuH.Acrylic hydrogels-based biocomposites: synthesis and characterization. Journal of Applied Polymer Science, 2013, vol. 127, no. 5, pp. 4061–4071. doi: 10.1002/app.37992
6.     Yang S., Park K., Rocca J.G. Semi-interpenetrating polymer network superporous hydrogels based on poly(3-sulfopropyl acrylate, potassium salt) and poly(vinyl alcohol): synthesis and characterization.Journal of Bioactive and Compatible Polymers,2004, vol.19, no.2, pp.81–100. doi: 10.1177/0883911504042641
7.     Pavlyuchenko V.N., Ivanchev S.S. Composite polymer hydrogels. Polymer Science. Series A, 2009, vol. 51, no. 7, pp. 743–760. doi: 10.1134/S0965545X09070013
8.     Ahmad M.B., Shameli K., Darroudi M., Yunus W.M.Z., Abrahim N.A., Hamid A.A., Zargar M. Synthesis and antibacterial activity of silver/montmorillonite nanocomposites. Research Journal of Biological Sciences, 2009, vol. 4, no. 9, pp. 1032–1036.
9.     Borisova O.V., Zaremski M.Y., Borisov O.V., Billon L. The well-defined bootstrap effect in the macroinitiator-mediated pseudoliving radical copolymerization of styrene and acrylic acid. Polymer Science – Series B, 2013, vol. 55, no. 11–12, pp. 573–576.
10.Kasanov K.N., Popov V.A., Evseev R.A., Andreev V.A., Vezentsev A.I., Ponomareva N.F., Ignat'eva Yu.A., Uspenskaya M.V., Khripunov A.K. Modifitsirovannyi serebrom montmorillonit: poluchenie, antimikrobnaya aktivnost' i meditsinskoe primenenie v bioaktivnykh ranevykh pokrytiyakh [Silver-modified montmorillonite: preparation, antimicrobial activity and medical applications in bioactive wound dressings]. Nauchnye Vedomosti Belgorodskogo Gosudarstvennogo Universiteta. Seriya: Meditsina. Farmatsiya, 2013, vol. 23, no. 18, pp. 188–197.
11.Popov V.A., Ignat’eva Y.A., Uspenskaya M.V., Kasanov K.N. Sintez sorbiruyushchikh polimerov meditsinskogo naznacheniya [Synthesis of polymer sorbent for medical devices]. Izvestiya SPbGTI(TU), 2014, no. 23 (49), pp. 23–25.
12.Fong J., Wood F. Nanocrystalline silver dressings in wound management: a review. International Journal of Nanomedicine, 2006, vol. 1, no. 4, pp. 441–449. doi: 10.2147/nano.2006.1.4.441
13.Kasanov K.N., Popov V.A., Evseev R.A., Ignat'eva Yu.A., Uspenskaya M.V. Bioaktivnoe gidrogelevoe ranevoe pokrytie [Bioactive hydrogel wound covering]. Filing no. 2013149052. Priority date: 06.11.2013.
14.Pillai J.J., Thulasidasan A.K.T., Anto R.J., Chithralekha D.N., Narayanan A., Kumar G.S.V. Folic acid conjugated cross-linked acrylic polymer (FA-CLAP) hydrogel for site specific delivery of hydrophobic drugs to cancer cells. Journal of Nanobiotechnology, 2014, vol. 12, no. 1, art. 25. doi: 10.1186/1477-3155-12-25
15.Wright J.B., Lam K., Hansen D., Burrell R.E. Efficacy of topical silver against fungal burnwound pathogens. American Journal of Infection Control, 1999, vol. 27, no. 4, pp. 344–350. doi: 10.1016/S0196-6553(99)70055-6
16.Baker C., Pradhan A., Pakstis L., Pochan D.J., Shah S.I. Synthesis and antibacterial properties of silver nanoparticles. Journal of Nanoscience and Nanotechnology, 2005, vol. 5, no. 2, pp. 244–249. doi: 10.1166/jnn.2005.034
17.Banerjee I., Mishra D., Das T., Maiti T.K. Wound pH-responsive sustained release of therapeutics from a poly(NIPAAm-co-AAc) hydrogel. Journal of Biomaterials Science, Polymer Edition, 2012, vol. 23, no. 1–4, pp. 111–132. doi: 10.1163/092050610X545049

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.