S. I. Eliseev, V. I. Demidov, A. S. Chirtsov, A. A. Kudryavtsev, V. I. Kolobov, E. A. Bogdanov

Read the full article  ';


The paper deals with the processes occurring during electrical breakdown in gases as well as numerical simulation of these processes using adaptive mesh refinement methods. Discharge between needle electrodes in helium at atmospheric pressure is selected for the test simulation. Physical model of the accompanying breakdown processes is based on self- consistent system of continuity equations for streams of charged particles (electrons and positive ions) and Poisson equation for electric potential. Sharp plasma heterogeneity in the area of streamers requires the usage of adaptive algorithms for constructing of computational grids for modeling. The method for grid adaptive construction together with justification of its effectiveness for significantly unsteady gas breakdown simulation at atmospheric pressure is described. Upgraded version of Gerris package is used for numerical simulation of electrical gas breakdown. Software package, originally focused on solution of nonlinear problems in fluid dynamics, appears to be suitable for processes modeling in non-stationary plasma described by continuity equations. The usage of adaptive grids makes it possible to get an adequate numerical model for the breakdown development in the system of needle electrodes. Breakdown dynamics is illustrated by contour plots of electron densities and electric field intensity obtained in the course of solving. Breakdown mechanism of positive and negative (orientated to anode) streamers formation is demonstrated and analyzed. Correspondence between adaptive building of computational grid and generated plasma gradients is shown. Obtained results can be used as a basis for full-scale numerical experiments on electric breakdown in gases.

Keywords:  plasma modeling, gas breakdown, adaptive methods, streamers, pulsed discharge

1. Bogdanov E.A., Kolobov V.I., Kudryavtsev A.A., Tsendin L.D. Scaling laws for oxygen discharge plasmas //
Technical Physics. 2002. V. 47. N 8. P. 946–954.
2. Bogdanov E.A., Kudryavtsev A.A., Tsendin L.D., Arslanbekov R.R., Kolobov V.I., Kudryavtsev V.V. Substantiation
of the two-temperature kinetic model by comparing calculations within the kinetic and fluid models
of the positive column plasma of a DC oxygen discharge // Technical Physics. 2003. V. 48. N 8. P. 983–
3. Bogdanov E.A., Kudryavtsev A.A., Tsendin L.D., Arslanbekov R.R., Kolobov V.I., Kudryavtsev V.V. Scaling
laws for the spatial distributions of the plasma parameters in the positive column of a DC oxygen discharge
// Technical Physics. 2003. V. 48. N 9. P. 1151–1158.
4. Gutsev S.A., Kudryavtsev A.A., Zamchiy R.Yu., Demidov V.I., Kolobov V.I. Diagnostics and modeling of a
short (without positive column) glow discharge in helium with nonlocal plasma // Proc. 40th European Physical
Society Conference on Plasma Physics. Finland, 2013. N 06.502.
5. Чернышева М.В., Марек В.П., Чирцов А.С., Швагер Д.А. Компьютерное моделирование при изучении
физических процессов в тлеющем разряде в воздушных смесях при низких давлениях // Научно-
технический вестник информационных технологий, механики и оптики. 2014. № 3 (91). С. 140–146.
6. Mesyats G.A. Similarity laws for pulsed gas discharges // Physics–Uspekhi. 2006. V. 49. N 10. P. 1045–
7. Bogdanov E.A., Chirtsov A.S., Kudryavtsev A.A. Fluxes of charged particles in two-chamber ICP discharge
in oxygen // IEEE Transactions on Plasma Science. 2011. V. 39. N 11 part 1. P. 2562–2563.
8. Chirtsov A.S., Kapustin K.D., Kudryavtsev A.A., Bogdanov E.A. Nonlocal behavior of electron fluxes and
excitation rates for «local» EEDF in moderate and high pressures DC positive column plasmas // IEEE
Transactions on Plasma Science. 2011. V. 39. N 11 part 1. P. 2580–2581.
9. Rafatov I. Bogdanov E.A., Kudryavtsev A.A. On the accuracy and reliability of different fluid models of the
direct current glow discharge // Physics of Plasmas. 2012. V. 19. N 3. Art. 033502.
10. Bogdanov E.A., Chirtsov A.S., Kudryavtsev A.A. Fundamental nonambipolarity of electron fluxes in 2D
plasmas // Physical Reviews Letters. 2011. V. 106. N 19. Art. 195001.
11. Райзер Ю.П. Физика газового разряда. 3-е изд. Долгопрудный: Интеллект, 2009. 736 с.
12. Kolobov V.I., Aslanbekov R.R. Simulations of low-temperature plasmas with adaptive cartesian mesh // ASP
Conference Series. 2012. V. 459. P. 328–333.
13. Hagelaar G.J.M., Kroesen G.M.W., Van Slooten U., Schreuders H. Modeling of the microdischarges in
plasma addressed liquid crystal displays // Journal of Applied Physics. 2000. V. 88. N 5. P. 2252–2262.
14. Kolobov V.I., Arslanbekov R.R., E Bogdanov.A., Eliseev S., Kudryavtsev A.A. Comparison of computational
tools for simulations of glow and corona discharges // Proc. XXXI International Conference on Phenomena
in Ionized Gases (ICPIG). Granada, Spain, 2013. PS2-024.
15. Базелян Э.П., Райзер Ю.П. Искровой разряд. М.: МФТИ, 1997. 320 с.
16. Kolobov V.I., Arslanbekov R.R. Towards adaptive kinetic-fluid simulations of weakly ionized plasmas //
Journal of Computational Physics. 2012. V. 231. N 3. P. 839–869.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.