doi: 10.17586/2226-1494-2015-15-1-22-29


STARS IDENTIFICATION AT THE ASTRONOMICAL COORDINATES DETERMINATION BY MEANS OF AN AUTOMATED ZENITH TELESCOPE

S. V. Gayvoronsky, E. V. Rusin, V. V. Tsodokova


Read the full article  ';
Article in Russian

For citation: Gayvoronskiy S.V., Rusin E.V., Tsodokova V.V. Stars identification at the astronomical coordinates determination by means of an automated zenith telescope. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 1, pp. 22–29 (in Russian)

Abstract

Scope of research. The paper deals with two approaches to the stars identification: an algorithm of similar triangles and an algorithm of interstellar angular distances.

Method. Comparative analysis of the considered algorithms is performed using experimental data obtained by the prototype of zenith telescope as applied to the problem of coordinates determination by automated zenith telescope.

Main results. The analysis has revealed that identification method based on the interstellar angular distances provides star identification with higher reliability and several times faster than the algorithm of similar triangles. However, the algorithm of interstellar angular distances is sensitive to the lens focal length, so a combined stars identification method is proposed. The idea of this method is to integrate the two above algorithms in order to calculate the lens focal length and to identify directly the stars.

Practical significance. The combined method gives the possibility for valid identification of the stars visible in the field of view with comparatively short processing time whether the lens focal length is available or not.


Keywords: optoelectronic device, astronomical coordinates, zenith telescope, stars identification

References

1. Avanesov G.A., Bessonov R.V., Kurkina A.N., Liudomirsky M.B., Kayutin I.S., Yamshchikov N.E. Avtonomnye besplatformennye astroinertsial'nye navigatsionnye sistemy: printsipy postroeniya, rezhimy raboty i opyt ekspluatatsii [Autonomous strapdown stellar-inertial navigation systems: design principles, operation modes and operating experience]. Giroskopiya i Navigatsiya, 2013, no. 3, pp. 91–110.

2. Abakumov V.M. Features of the measurement of the angular coordinates of stars by precision optoelectronic systems. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 1996, vol. 63, no. 7, pp. 537– 541.

3. Brumberg V.A., Glebova N.I., Lukashova M.V., Malkov A.A., Pit'eva E.V., Rumyantseva L.I., Sveshnikov M.L., Fursenko M.A. Rasshirennoe ob"yasnenie k "Astronomicheskomu ezhegodniku" [Expanded explanation to the "Astronomical Yearbook"]. Trudy IPA RAN, 2004, no. 10, pp. 62–67.

4. Berezin V.B., Berezin V.V., Sokolov A.V., Tsytsulin A.K. Adaptivnoe schityvanie izobrazheniya v astronomicheskoi sisteme na matrichnom pribore s zaryadovoi svyaz'yu [Adaptive CCD pixel's size for star detection and position estimation]. Izv. Vuzov Rossii. Radioelektronika, 2004, no. 4, pp. 36–45.

5. Mantsvetov A.A., Sokolov A.V., Umnikov D.V., Tsytsulin A.K. Izmerenie koordinat spetsial'no formiruemykh opticheskikh signalov [Coordinate measuring specially formed optical signals]. Voprosy Radioelektroniki. Seriya: Tekhnika Televideniya, 2006, no. 2, pp. 90–94.

6. Gayvoronsky S., Rusin V., Tsodokova V. A comparative analysis of methods for determinating star image coordinates in the photodetector plane. Automation and Control: Proc. Int. Conf. of Young Scientists. St. Petersburg, 2013, pp. 54–58.

7. Tsvetkov A.S. Rukovodstvo po Prakticheskoi Rabote s Katalogom Tycho-2 [Guidelines for Practical Operation with Tycho-2 Catalog]. St. Petersburg, 2005, 132 p.

8. Akkardo D., Rufino J. Novoe reshenie zadachi polucheniya nachal'nykh dannykh ob orientatsii pri pomoshchi astronomicheskogo datchika: algoritm, realizatsiya, ispytaniya [A new solution of the problem of primary data obtaining by using astronomical orientation sensor: algorithm, implementation, test]. Giroskopiya i Navigatsiya, 2001, no. 1, pp. 87–100.

9. Osipik V.A., Fedoseev V.I. Algorithms for automatically recognizing star groups from on board a spacecraft. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 1998, vol. 65, no. 8, pp. 629–635. 

10. Kruzhilov I.S. Metody i Programmnye Sredstva Povysheniya Effektivnosti Raspoznavaniya Grupp Zvezd v Avtonomnoi Astronavigatsii. Diss. … kand. tekhn. nauk [Methods and Software Improve the Efficiency of Recognition of Groups of Stars in Autonomous Celestial Navigation. Diss. eng. sci.]. Moscow, 2010, 141 p.

11. Ezhov O.M. Comparative analysis of star-detection algorithms for orientation devices with CCD arrays. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 1998, vol. 65, no. 8, pp. 649–652.

12. Blazhko S.N. Kurs Prakticheskoi Astronomii [Course of Practical Astronomy]. Moscow, Nauka Publ., 1979, 432 p.

13. Bratt S.P. Analysis of Star Identification Algorithms due to Unconpensated Spatial Distortion. Master of Science Thesis. Available at: http://digitalcommons.usu.edu/etd/1714 (accessed 10.11.2013).

14. Malinin V.V. Modelirovanie i Optimizatsiya Optiko-Elektronnykh Priborov s Fotopriemnymi Matritsami [Simulation and Optimization of Optoelectronic Devices with the Photodetector Array]. Novosibirsk, Nauka Publ., 2005, 256 p.

15. Malinin V.V., Faleev A.V. Optoelectronic systems for orientation from a star field. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 1996, vol. 63, no. 10, pp. 745–748.

16. Osipik V.A., Fedoseev V.I. Mathematical modelling of algorithms for recognizing groups of stars. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 1996, vol. 63, no. 7, pp. 505–509.

17. Kiselev A.A. Teoreticheskie Osnovaniya Fotograficheskoi Astrometrii [Theoretical Foundations of Photographic Astrometry]. Moscow, Nauka Publ., 1989, 264 p.

18. Stepanov O.A. Osnovy Teorii Otsenivaniya s Prilozheniyami k Zadacham Obrabotki Navigatsionnoi Informatsii. Ch. 1. Vvedenie v Teoriyu Otsenivaniya [Fundamentals of Estimation Theory with Applications to Problems of Navigational Information Processing. Part 1. Introduction to the Evaluation Theory]. St. Petersburg, TsNII Elektropribor Publ., 2009, 440 p.



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика