doi: 10.17586/2226-1494-2015-15-1-46-53


N. M. Shmidt, A. S. Usikov, E. I. Shabunina, A. E. Chernyakov, S. Y. Kurin, Y. N. Makarov, H. I. Helava, B. P. Papchenko

Read the full article  ';
Article in Russian

For citation: Shmidt N.M., Usikov A.S., Shabunina E.I., Chernyakov A.E., Kurin S.Yu., Makarov Yu. N., Helava H., Papchenko B.P. Study of mechanisms responsible for the efficiency degradation of the III-nitrides light emitting diodes. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 1, pp. 46–53 (in Russian)


The results for external quantum efficiency degradation of two types of light emitting diodes based on III-nitrides: blue and ultraviolet ones are presented. Existing mechanisms proposed for the degradation are considered briefly. Applying several techniques for studying the light emitting diodes at various stages of the aging test gives the possibility to reveal a new mechanism of defects formations with a help of multi-phonon recombination of carriers in an extended defects system and in local regions of random alloy fluctuations. These techniques include analysis of current voltage characteristics evolution at V<2V, the low frequency noise methods, and infrared microscopy. The multi-phonon recombination of carriers is accomplished by generation of native defects, in particular, In- or Ga-atoms and their migration. These processes lead to modification of the extended defects system properties and local composition of InGaN alloys in several regions that result in decreasing of the carriers participating in a radiative recombination and degradation of the external quantum efficiency. It was demonstrated that this mechanism of the defects formation can be responsible for the degradation of the blue and ultraviolet light emitting diodes. The mechanism can explain non monotonic dependence of the degradation process during the aging test, catastrophic failures of the light emitting diodes and low lifetime of the ultraviolet light emitting diodes. 

Keywords: light emitting diodes based on III-nitrides, system of extended defects, mechanisms of defects generation, degradation

Acknowledgements. Работа проводится Университетом ИТМО при финансовой поддержке государства в лице Минобрнауки России в рамках соглашения № 14.575.21.0054 (уникальный идентификатор прикладных научных исследований RFMEFI57514X0054) о предоставлении субсидии по теме: «Исследование новых технических возможностей для создания экологически чистого генератора водорода с использованием фотоэлектрохимического элемента на основе наноструктур полупроводниковых нитридов третьей группы».


1. Meneghesso G., Meneghini M., Zanoni E. Recent results on the degradation of white LEDs for lighting. Journal of Physics D: Applied Physics, 2010, vol. 43, no. 35, art. 354007. doi: 10.1088/0022- 3727/43/35/354007
2. Pinos A., Marcinkevicius S., Shur M.S. High current-induced degradation of AlGaN ultraviolet light emitting diodes. Journal of Applied Physics, 2011, vol. 109, no. 10, art. 103108. doi: 10.1063/1.3590149
3. Meneghini M., Trevisanello L., Sanna C., Mura G., Vanzi M., Meneghesso G., Zanoni E. High temperature electro-optical degradation of InGaN/GaN HBLEDs. Microelectronics Reliability, 2007, vol. 47, no. 9–11, pp. 1625–1629. doi: 10.1016/j.microrel.2007.07.081
4. Bochkareva N.I., Rebane Yu.T., Gorbunov R.I., Klochkov A.V., Shreter Yu.G., Efremov A.A. Nonuniformity of carrier injection and the degradation of blue LEDs. Semiconductors, 2006, vol. 40, no. 1, pp. 118–123. doi: 10.1134/S1063782606010210
5. Hibbard D.L., Jung S.P., Wang C., Ullery D., Zhao Y.S., Lee H.P., So W., Liu H. Low resistance high reflectance contacts to p-GaN using oxidized Ni/Au and Al or Ag. Applied Physics Letters, 2003, vol. 83, no. 2. pp. 311–313. doi: 10.1063/1.1591233
6. Fischer P., Christen J., Zacharias M., Schwegler V., Kirchner C., Kamp M. Spatially resolved imaging of the spectral emission characteristic of an InGaN/GaN-multi quantum well-light-emitting diode by scanning electroluminescence microscopy. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2000, vol. 39, no. 4 B, pp. 2414–2416.
7. Kovalev A.N., Manyakhin F.I., Kudryashov V.E., Turkin A.N., Yunovich A.E. Changes in the luminescent and electrical properties of InGaN/AlGaN/GaN light-emitting diodes during extended operation. Semiconductors, 1999, vol. 33, no. 2, pp. 192–199.
8. Sawyer S., Rumyantsev S.L., Shur M.S., Pala N., Bilenko Yu., Zhang J.P., Hu X., Lunev A., Deng J., Gaska R. Current and optical noise of GaN/AlGaN light emitting diodes. Journal of Applied Physics, 2006, vol. 100, no. 3, art. 034504. doi: 10.1063/1.2204355
9. Cao X.A., Sandvik P.M., LeBoeuf S.F., Arthur S.D. Defect generation in InGaN/GaN light-emitting diodes under forward and reverse electrical stresses. Microelectronics Reliability, 2003, vol. 43, no. 12, pp. 1987– 1991. doi: 10.1016/j.microrel.2003.06.001
10. Takeya M., Mizuno T., Sasaki T., Ikeda S., Fujimoto T., Ohfuji Y., Oikawa K., Yabuki Y., Uchida S., Ikeda M. Degradation in AlGaInN lasers. Physica Status Solidi C: Conferences, 2003, no. 7, pp. 2292–2295. doi: 10.1002/pssc.200303324
11. Leung K.K., Fong W.K., Chan P.K.L., Surya C. Physical mechanisms for hot-electron degradations in GaN light-emitting diodes. Journal of Applied Physics, 2010, vol. 107, no. 7, art. 073103. doi: 10.1063/1.3357312
12. Kamanin A.V., Kolmakov A.G., Kop'ev P.S., Onushkin G.A., Sakharov A.V., Shmidt N.M., Sizov D.S., Sitnikova A.A., Zakgeim A.L., Zolotareva R.V., Usikov A.S. Degradation of blue LEDs related to structural disorder. Physica Status Solidi (C) Current Topics in Solid State Physics, 2006, vol. 3, pp. 2129–2132. doi: 10.1002/pssc.200565162
13. Kurin S., Antipov A., Barash I., Roenkov A., Usikov A., Helava H., Ratnikov V., Shmidt N., Sakharov A., Tarasov S., Menkovich E., Lamkin I., Papchenko B., Makarov Y. Characterization of HVPE-grown UV LED heterostructures. Physica Status Solidi (C) Current Topics in Solid State Physics, 2014, vol. 11, no. 3–4, pp. 813–816. doi: 10.1002/pssc.201300459
14. Chernyakov A.E., Levinshtein M.E., Talnishnikh N.A., Shabunina E.I., Shmidt N.M. Low-frequency noise in diagnostics of power blue InGaN/GaN LEDs. Journal of Crystal Growth, 2014, vol. 401, pp. 302–304.
15. Schubert E.F. Light-Emitting Diodes. Cambridge University Press, 2006, 327 p.
16. Averkiev N.S., Chernyakov A.E., Levinshtein M.E., Petrov P.V., Yakimov E.B., Shmidt N.M., Shabunina E.I. Two channels of non-radiative recombination in InGaN/GaN LEDs. Physica B: Condensed Matter, 2009, vol. 404, no. 23–24, pp. 4896–4898. doi: 10.1016/j.physb.2009.08.252
17. Cao X.A., Teetsov J.M., D'Evelyn M.P., Merfeld D.W., Yan C.H. Electrical characteristics of InGaN/GaN light-emitting diodes grown on GaN and sapphire substrates. Applied Physics Letters, 2004, vol. 85, no. 1, pp. 7–9. doi: 10.1063/1.1767280
18. Shabunina E., Averkiev N., Chernyakov A., Levinshtein M., Petrov P., Shmidt N. Extended defect system as a main source of non-radiative recombination in InGaN/GaN LEDs. Physica Status Solidi (C) Current Topics in Solid State Physics, 2013, vol. 10, pp. 335–337. doi: 10.1002/pssc.201200656
19. Yassievich I.N. Recombination-induced defect heating and related phenomena. Semiconductor Science and Technology, 1994, vol. 9, no. 8, pp. 1433–1453.
20. Chernyakov A.E., Levinshtein M.E., Petrov P.V., Shmidt N.M., Shabunina E.I., Zakgeim A.L. Failure mechanisms in blue InGaN/GaN LEDs for high power operation. Microelectronics Reliability, 2012, vol. 52, no. 9–10, pp. 2180–2183. doi: 10.1016/j.microrel.2012.06.051 

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2023 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.