doi: 10.17586/2226-1494-2015-15-1-54-59


I. A. Dyomichev, A. I. Sidorov, N. V. Nikonorov, T. A. Shakhverdov

Read the full article  ';
Article in русский

For citation: Demichev I.A., Sidorov A.I., Nikonorov N.V., Shahverdov T.A. Formation of luminescent optical waveguides in silicate glass matrix by the ion-exchange technique. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 1, pp. 54–59 (in Russian)


We present spectra of the alkali-silicate glasses with copper ions in near-surface area, introduced by ion exchange of different temperature and duration. It is shown that the reduction of Cu2+ in the near-surface area causes existence of Cu+ and neutral atoms in glass after the ion-exchange in divalent salt. The ion-exchange itself involves only Cu+ and Na+ ions. The formation of subnanometer clusters Cun is due to neutral copper atoms staying in near-surface zone. We have shown that the waveguide layer in near-surface area, made by ion-exchange, has а visible luminescence with the excitation by UVradiation. At the same time, the contribution to luminescence is made by Cu+ ions, molecular clusters Cun and by dimers Cu+ - Cu+ . During the high-temperature ion-exchange at 600 °С the formation and destruction equilibrium shift of molecular clusters Cun can be seen. An hour ion-exchange leads to molecular clusters Cun destruction, while at time periods less than 30 min and around 18 hours it leads to the formation of Cun. The sample turns green after 18,5 hours ion-exchange showing formation of a considerable amount of divalent copper ions Cu2+ therein.

Keywords: ion-exchange, copper, alkali-silicate glass, luminescence, luminescent waveguide

Acknowledgements. Работа выполнена при государственной финансовой поддержке Российского научного фонда (Соглашение № 14-23-00136).


1. Demichev I.A., Ignat'ev A.I., Nikonorov N.V., Sgibnev E.M., Sidorov A.I., Khrushcheva T.A., Shakhverdov T.A. Specific features of the luminescence of silicate glasses with silver introduced by ion exchange. Optics and Spectroscopy, 2014, vol. 116, no. 4, pp. 587–592. doi: 10.1134/S0030400X14040080

2. Dubrovin V.D., Ignatiev A.I., Nikonorov N.V., Sidorov A.I., Shakhverdov T.A., Agafonova D.S. Luminescence of silver molecular clusters in photo-thermo-refractive glasses. Optical Materials, 2014, vol. 36, no. 4, pp. 753–759. doi: 10.1016/j.optmat.2013.11.018 

3. Agafonova D.S., Sidorov A.I., Kolobkova E.V., Ignatiev A.I., Nikonorov N.V. Luminescent optical fibers with silver molecular clusters and semiconductor quantum dots for detection of ultraviolet and visible radiation. Proceedings of SPIE - The International Society for Optical Engineering, 2014, vol. 9141, art. 91411T. doi: 10.1117/12.2052259

4. Rowan B.C., Wilson L.R., Richards B.S. Advanced material concepts for luminescent solar concentrators. IEEE Journal of Selected Topics in Quantum Electronics, 2008, vol. 14, no. 5, pp. 1312–1322. doi: 10.1109/JSTQE.2008.920282

5. Kolobkova E.V., Nikonorov N.V., Sidorov A.I., Shakhverdov T.A. Luminescence of molecular silver clusters in oxyfluoride glasses. Optics and Spectroscopy, 2013, vol. 114, no. 2, pp. 236–239. doi: 10.1134/S0030400X13020124

6. Tervonen A., West B.R., Honkanen S. Ion-exchanged glass waveguide technology: a review. Optical Engineering, 2011, vol. 50, no. 7, art. 071107. doi: 10.1117/1.3559213

7. Agafonova D.S., Sidorov A.I., Kolobkova E.V., Nikonorov N.V. The effect of ions of rare-earth metals on the temperature dependence of the luminescence of molecular clusters of silver in oxyfluoride glasses. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2014, vol. 81, no. 7, pp. 408–413. doi: 10.1364/JOT.81.000408

8. Agafonova D.S., Kolobkova E.V., Sidorov A.I. Temperature dependence of the luminescence intensity in optical fibers of oxyfluoride glass with CDS and CDSXSE1-X quantum dots. Technical Physics Letters, 2013, vol. 39, no. 7, pp. 629–631. doi: 10.1134/S1063785013070158

9. Agafonova D.S., Sidorov A.I. Fiber-optic indicator of the appearance of a spark and an arc with spectral conversion of the radiation to be detected. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2011, vol. 78, no. 11, pp. 735–738. doi: 10.1364/JOT.78.000735

10. Afanas'ev V.P., Vasil'ev V.N., Ignat'ev A.I., Kolobkova E.V., Nikonorov N.V., Sidorov A.I., Tsekhomskiǐ V.A. New luminescent glasses and prospects of using them in solar energy. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2013, vol. 80, no. 10, pp. 635–641. doi: 10.1364/JOT.80.000635

11. Fujimoto Y., Nakatsuka M. Spectroscopic properties and quantum yield of Cu-doped SiO2 glass. Journal of Luminescence, 1997, vol. 75, no. 3, pp. 213–219.

12. Guo H., Wei R.F., Liu X.Y. Tunable white luminescence and energy transfer in (Cu+ )2, Eu3+ codoped sodium silicate glasses. Optics Letters, 2012, vol. 37, no. 10, pp. 1670–1672. doi: 10.1364/OL.37.001670

13. Wei W., Lu Y., Chen W., Chen S. One-pot synthesis, photoluminescence, and electrocatalytic properties of subnanometer-sized copper clusters. Journal of the American Chemical Society, 2011, vol. 133, no. 7, pp. 2060–2063. doi: 10.1021/ja109303z

14. Vilar-Vidal N., Blanco M.C., Lopez-Quintela M.A., Rivas J., Serra C. Electrochemical synthesis of very stable photoluminescent copper clusters. Journal of Physical Chemistry C, 2010, vol. 114, no. 38, pp. 15924– 15930. doi: 10.1021/jp911380s

15. Vazquez-Vazquez C., Banobre-Lopez M., Mitra A., Lopez-Quintela M.A., Rivas, J. Synthesis of small atomic copper clusters in microemulsions. Langmuir, 2009, vol. 25, no. 14, pp. 8208–8216. doi: 10.1021/la900100w

16. Nikonorov N.V., Sidorov A.I., Tsekhomskii V.A., Shakhverdov T.A. Broadband copper luminescence in potassium-aluminum borate glasses. Optics and Spectroscopy, 2013, vol. 114, no. 3, pp. 379–383. doi: 10.1134/S0030400X13030211

17. Srikumar T., Kityk I.V., Srinivasa Rao C., Gandhi Y., Piasecki M., Bragiel P., Ravi Kumar V., Veeraia N. Photostimulated optical effects and some related features of CuO mixed Li2O–Nb2O5–ZrO2–SiO2 glass ceramics. Ceramics International, 2011, vol. 37, no. 7, pp. 2763–2779. doi: 10.1016/j.ceramint.2011.04.031

18. Gonella F. Characterization of Cu–Na ion-exchanged glass waveguides. Applied Physics Letters, 1996, vol. 69, no. 3, pp. 314–315.

19. Bogomolova L.D., Gan'shin V.A., Jachkin V.A., Kubrinskaya M.E., Petrova V.Z. EPR and optical study of copper diffusion layers. Journal of Non-Crystalline Solids, 1981, vol. 45, no. 2, pp. 249–255. doi: 10.1016/0022-3093(81)90191-5

20. Karlsson S., Jonson B., Reibstein S., Wondraczek L. Surface ruby colouring of float glass by sodium-copper ion exchange. Glass Technology European Journal of Glass Science and Technology Part A, 2013, vol. 54, no. 3, pp. 100–107.

21. Gonella F., Quaranta A., Padovani S., Sada C., D'Acapito F., Mauricio C., Battaglin G., Cattaruzza E. Copper diffusion in ion-exchanged soda-lime glass. Applied Physics A: Materials Science and Processing, 2005, vol. 81, no. 5, pp. 1065–1071. doi: 10.1007/s00339-004-2949-7

22. Yoko T., Nishiwaki T., Kamiya K., Sakka S. Copper-alkali ion exchange of alkali aluminosilicate glasses in copper-containing molten salt: II, divalent copper salts, CuCl2 and CuSO4. Journal of the American Ceramic Society, 1991, vol. 74, no. 5, pp. 1112–1116. doi: 10.1111/j.1151-2916.1991.tb04350.x

23. Frolova E.S., Minaicheva V.E. Vakuumnaya Tekhnika. Spravochnik [Vacuum Equipment. Handbook]. Moscow, Mashinostroenie Publ., 1985, 360 p. 

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2023 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.