doi: 10.17586/2226-1494-2015-15-1-60-64


INVESTIGATION OF HETEROSTRUCTURES 3C-SIC/15R-SIC

S. P. Lebedev, A. A. Lebedev, I. P. Nikitina, V. A. Shkoldin, D. B. Shustov


Read the full article  ';
Article in russian

For citation: Lebedev A.A., Lebedev S.P., Nikitina I.P., Shkoldin V.A., Shustov D.B. Investigation of heterostructures 3C-SiC/15RSiC. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 1, pp. 60–64 (in Russian)

Abstract

The subject of study. Investigation results for 3C-SiC layers, obtained on single-crystal 15R-SiC substrates by sublimation epitaxy in vacuum are presented.

Materials and methods. 15R polytype Lely crystals were used as a substrate; the growth was carried out on polar С (000 )1 and Si (0001) substrate faces. The growth temperature was 1950-2000 °C, and growth time was equal to 10 min. Commercial silicon carbide powder with a grain diameter equal to 10-20 µm was used as a growth source. The following methods were applied for the characterization of grown epitaxial layers: cathodoluminescence, optical microscopy and two-crystal X-ray diffraction.

Main results. The possibility of obtaining epitaxial 3C-SiC on 15R-SiC substrate by sublimation epitaxy in vacuum was demonstrated. It is shown that, C-face is preferable for heteropolytype growth, since more uniform growth of cubic polytype is observed on it with a small percentage of spurious substrate polytype inclusions; the same situation appears in the case of 6H-SiC substrate application.

Practical significance. Comparison of the results of heteropolytype growth for 3C-SiC on substrates of other polytypes (6HSiC, 15R-SiC, 4H-SiC) will give the possibility to understand more completely the transformation mechanism of the crystal lattice during epitaxial growth and to develop a theoretical model of the process.


Keywords: silicon carbide, sublimation epitaxy, cathodoluminescence, X-ray diffractometry

Acknowledgements. Работа частично выполнена при государственной финансовой поддержке ведущих университетов Российской Федерации (субсидия 074-U01) и гранта РФФИ 14-02-00552.

References

1. Properties of Advanced Semiconductor Materials: GaN, AlN, InN, BN, SiC, SiGe. Eds. M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur. NY, John Wiley & Sons, 2001, 226 p.

2. Gorin S.N., Ivanova L.M. Cubic silicon carbide (3C-SiC): structure and properties of single crystals grown by thermal decomposition of methyl triclorosilane in hydrogen. Physica Status Solidi (B) Basic Research, 1997, vol. 202, no. 1, pp. 221–245.

3. Nishino S., Powell J.A., Will H.A. Production of large area single-crystal wafers of cubic SiC for semiconductor devices. Applied Physics Letters, 1983, vol. 42, no. 5, pp. 460–462. doi: 10.1063/1.93970

4. Nilsson H.-E., Englund U., Hjelm M., Belloti E., Brennan K. Full band Monte Carlo study of high field transport in cubic silicon carbide. Journal of Applied Physics, 2003, vol. 93, no. 6, pp. 3389–3394. doi: 10.1063/1.1554472

5. Spry D.J., Trunek A.J., Neudeck P.G. High breakdown field P-type 3C-SiC schottky diodes grown on stepfree 4H-SiC mesas. Materials Science Forum, 2004, vol. 457–460, pp. 1061–1064.

6. Eriksson J., Weng M.H., Roccaforte F., Giannazzo F., Leone S., Raineri V. Toward an ideal Schottky barrier on 3C-SiC. Applied Physics Letters, 2009, vol. 95, no. 8, art. 081907. doi: 10.1063/1.3211965

7. Eriksson J., Weng M.-H., Roccaforte F., Giannazzo F., Leone S., Raineri V. Demonstration of defect-induced limitation on the properties of Au/3C-SiC Schottky barrier diodes. Solid State Phenomena, 2009, vol. 156– 158, pp. 331–336. doi: 10.4028/www.scientific.net/SSP.156-158.331

8. Steckl A.J., Devrajan J., Tlali S., Jackson H.E., Tran C., Gorin S.N., Ivanova L.M. Characterisation of 3CSiC crystals grown by thermal decomposition of methyltrichlorosilane. Applied Physics Letters, 1996, vol. 69, no. 25, pp. 3824–3826.

9. Bayazitov R.M., Khaibullin I.B., Batalov R.I., Nurutdinov R.M., Antonova L.Kh., Aksenov V.P., Mikhailova G.N. Structure and photoluminescent properties of SiC layers on Si, synthesized by pulsed ion-beam treatment. Nuclear Instruments and Methods in Physics Research B, 2003, vol. 206, pp. 984–988. doi: 10.1016/S0168-583X(03)00907-8

10. Yamanaka M., Daimon H., Sakuma E., Misawa S., Yoshida S. Temperature dependence of electrical properties of n-and p-type 3C-SiC. Journal of Applied Physics, 1987, vol. 61, no. 2, pp. 599–603. doi: 10.1063/1.338211

11. Lebedev A.A. Heterojunctions and superlattices based on silicon carbide. Semiconductor Science and Technology, 2006, vol. 21, no. 6, pp. R17–R34. doi: 10.1088/0268-1242/21/6/R01

12. Lebedev A.A., Zamoryanskaya M.V., Davydov S.Yu., Kirilenko D.A., Lebedev S.P., Sorokin L.M., Shustov D.B., Scheglov M.P. A study of the intermediate layer in 3C-SiC/6H-SiC heterostuctures. Journal of Crystal Growth, 2014, vol. 396, pp. 100–103. doi: 10.1016/j.jcrysgro.2014.03.030

13. Bulat P.V., Lebedev A.A., Makarov Yu.N. Issledovanie vozmozhnosti vyrashchivaniya ob"emnykh kristallov karbida kremniya politipa 3S dlya silovykh priborov [Possibility research for silicon carbide bulk crystals growth of 3C polytype for power devices]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 3 (91), pp. 64–69.

14. Chien F.R., Nutt S.R., Yoo W.S., Kimoto T., Matsunami H. Terrace growth and polytype development in epitaxial β-SiC films on α-SiC (6H and 15R) substrates. Journal of Materials Research, 1994, vol. 9, no. 4, pp. 940–954.

15. Ikeda M., Matsunami H., Tanaka T. Site effect on the impurity levels in 4H, 6H and 15R SiC. Physical Review B, 1980, vol. 22, no. 6, pp. 2842–2854. doi: 10.1103/PhysRevB.22.2842

16. Suzuki A., Matsunami H., Tanaka T. Photoluminescence due to Al, Ga, and B acceptors in 4H-, 6H-, and 3CSiC grown from Si Melt. Journal of the Electrochemical Society, 1997, vol. 124, no. 2, pp. 241–246.

17. Clemen L.L., Devaty R.P., MacMillan M.F., Yoganathan M., Choyke W.J., Larkin D.J., Powel J.A., Edmond J.A., Kong H.S. Aluminium acceptor four particle bound exciton complex in 4H, 6H, and 3C SiC. Applied Physics Letters, 1993, vol. 62, no. 23, pp. 2953–2955. doi: 10.1063/1.109627

18. Yoganathan M., Choyke W.J., Devaty R.P., Neudeck P.G. Free to bound transition-related electroluminescence in 3C and 6H SiC p+ -n junctions at room temperature. Journal of Applied Physics, 1996, vol. 80, no. 3, pp. 1763–1767.

19. Choyke W.J., Patrick L. Luminescence of donor-acceptor pairs in cubic SiC. Physical Review B, 1970, vol. 2, no. 12, pp. 4959–4965. doi: 10.1103/PhysRevB.2.4959

20. Altaiskii Yu.M., Avramenko S.F., Guseva O.A., Kiselev V.S. Kraevaya fotolyuminestsentsiya kubicheskogo karbida kremniya [Edge photoluminescence of cubic silicon carbide]. Soviet Physics. Semiconductors, 1987, vol. 21, p. 2072.



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика