doi: 10.17586/2226-1494-2015-15-2-211-217


NON-INTRUSIVE GAS-PHASE THERMOMETRY FOR INDUSTRIAL OXY-FUEL BURNERS

J. W. Tröger, T. Seeger


Read the full article  ';
Article in English

For citation: Tröger J.W., Seeger T. Non-intrusive gas-phase thermometry for industrial oxy-fuel burners. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 2, pp. 211–217. (in English)

Abstract
The use of oxy-fuel combustion processes is of large interest for several industrial fields applications since it offers the advantages of low NOx emissions in combination with high combustion temperatures even without additional preheating. For optimization of such processеs a detailed understanding based on precise experimental data is necessary. So far there is still a lack of precise experimental data achieved with high spatial and temporal resolution from industrial relevant turbulent oxy-fuel combustion processes. Beside species concentration information the gas phase temperature is of utmost importance for an improved understanding of the basic chemical reactions and the pollutant formation. The coherent anti-Stokes Raman spectroscopy (CARS) technique is a very well suited laser based tool for a non-intrusive investigation of such turbulent high temperature combustion processes. In this work we analysed an industrial 400 kW oxy-fuel burner with the help of O2 based vibrational CARS system which is integrated in an industrial relevant test furnace. The burner is fed with pure oxygen and natural gas at an equivalence ratio of =0.9. At one downstream position temporal and spatial resolved temperatures were measured along a 600 mm line. Additional air sucked in from the environment seems to influence the gas phase temperature significantly.

Keywords: vibrational coherent Anti-Stokes Raman scattering, spectroscopy, temperature measurement, oxy-fuel combustion, combustion diagnostic.

Acknowledgements. The authors gratefully acknowledge the AiF for funding the IGF work 17838 N / 4 of the research association Gas- und Wärme-Institut Essen e.V.- GWI, Hafenstraße 101, 45356 Essen, Germany, in the framework of the industrial common research (IGF) of the Federal Ministry of Economics and Technology based on a resolution of the German Federal Parliament.

References
1. Maclean S., Leicher J., Giese A., Irlenbusch J. NOx-arme Nutzung von Oxy-Fuel-Verbrennung mit stark N2- haltigem Sauerstoff in der NE-Metallurgie. GWI - Gaswärme International, 2012, vol. 61, pp. 85–92.
2. Al-Chalabir R., Schatz C., Yap L., Marshall R. Flat flame oxy-fuel burner technology for glass melting. Ceramic Engineering and Science Proceedings, 1995, vol. 16, no. 2, pp. 202–215.
3. Ross C.P., Tincher G.L., Rasmussen M. Glass melting technology: a technical and economic assessment, glass manufacturing industry. U.S. Department of Energy-Industrial Technologies Program, 2004, no. DEFC- 36-021D14315.
4. Kluger F., Mönckert P., Wild T., Marquard A., Levasseur A.A. Entwicklungsstand der Oxy-Fuel- Verbrennungstechnologie. In: Kraftwerkstechnisches Kolloquium 2010 – Kraftwerkstechnik.
5. Kuckshinrichs W., P Markewitz., Linssen J., Zapp P., Peters M., Köhler B., Müller T.E., Leitner W. Weltweite Innovation bei der Entwicklung von CCS-Technologien und Möglichkeiten der Nutzung
des Recyclings von CO2. Study on Behalf of the Federal Ministry of Economy and Energy, 2010, no. 25/08 AZ | D4-020815.
6. Warnatz J., Maas U., Dibble R.W. Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation. Berlin, Springer, 2001, 378 p. doi: 10.1007/978-3-540-45363-5
7. Lallemant N., Breussin F., Weber R. Analysis of the flame structure, heat transfer and NOx emission characteristics of oxy-natural gas flames. International Flame Research Foundation, 1998, doc no. F85/y/7.
8. Lallemant N., Dugué J., Weber R. Analysis of the experimental data collected during the OXYFLAM-1 and OXYFLAM-2 experiments. International Flame Research Foundation, 1997, no. F 85/Y/4.
9. Lallemant N., Dugué J., Weber R. Measurement techniques for studying oxy-natural gas flames. Journal of the Institute of Energy, 2003, vol. 76, no. 507, pp. 38–53.
10. Eckbreth A.C. Laser Diagnostics for Combustion Temperature and Species. Amsterdam, Gordon and Breach Publishers, 1996, 632 p.
11. Kohse-Höinghaus K. Applied Combustion Diagnostics. NY, Taylor & Francis, 2002, 672 p.
12. Kampmann S., Seeger T., Leipertz A. Simultaneous coherent anti-Stokes Raman scattering and twodimensional laser Rayleigh thermometry in a contained technical swirl combustor. Applied Optics, 1995, vol. 34, no. 15, pp. 2780–2786.
13. Beyrau F., Datta A., Seeger T., Leipertz A. Dual-pump CARS for the simultaneous detection of N2, O2 and CO in CH4 flames. Journal of Raman Spectroscopy, 2002, vol. 33, no. 11–12, pp. 919–924.
14. Braeuer A., Beyrau F., Weikl M.C., Seeger T., J Kiefer., Leipertz A., Holzwarth A., Soika A. Investnigation of the combustion process in an auxiliary heating system using dual-pump CARS. Journal of Raman Spectroscopy, 2006, vol. 37, no. 6, pp. 633–640. doi: 10.1002/jrs.1489
15. Magre P., Aguerre F., Collin G., Versaevel P., Lacas F., Rolon J.C. Temperature and concentration measurements by CARS in counterflow laminar diffusion flames. Experiments in Fluids, 1995, vol. 18, no. 5, pp. 376–382. doi: 10.1007/BF00211395
16. Brackmann C., Bood J., Bengtsson P.-E., Seeger T., Schenk M., Leipertz A. Simultaneous vibrational and pure rotational coherent anti-Stokes Raman spectroscopy for temperature and multispecies concentration measurements demonstrated in sooting flames. Applied Optics, 2002, vol. 41, no. 3, pp. 564–572.
17. Beyrau F., Seeger T., Malarski A., Leipertz A. Determination of temperatures and fuel/air ratios in an etheneair flame by dual-pump CARS. Journal of Raman Spectroscopy, 2003, vol. 34, no. 12, pp. 946–951. doi:10.1002/jrs.1092
18. Datta A., Beyrau F., Seeger T., Leipertz A. Temperature and CO concentration measurements in a partially premixed CH4/Air coflowing jet flame using coherent Anti-Stokes Raman scattering. Combustion Science and Technology, 2004, vol. 176, no. 11, pp. 1965–1984. doi: 10.1080/00102200490504607
19. Weikl M.C., Beyrau F., Leipertz A. Simultaneous temperature and exhaust-gas recirculation-measurements in a homogeneous charge-compression ignition engine by use of pure rotational coherent anti-Stokes Raman spectroscopy. Applied Optics, 2006, vol. 45, no. 15, pp. 3646–3651. doi: 10.1364/AO.45.003646
20. Brackmann C., Bood J., Afzelius M., Bengtsson P.-E. Thermometry in internal combustion engines via dualbroadband rotational coherent anti-Stokes Raman spectroscopy. Measurement Science and Technology, 2004, vol. 15, no. 3, pp. R13–R25. doi: 10.1088/0957-0233/15/3/R01
21. Clauss W., Klimenko D.N., Oschwald M., Vereschagin K.A., Smirnov V.V., Stelmakh O.M., Fabelinsky V.I. CARS investigation of hydrogen Q-branch linewidths at high temperatures in a high-pressure H2-O2 pulsed burner. Journal of Raman Spectroscopy, 2002, vol. 33, no. 11–12, pp. 906–911.
22. Hussong J., Lückerath R., Stricker W., Bruet X., Joubert P., Bonamy J., Robert D. Hydrogen CARS thermometry in a high-pressure H2–air flame. Test of H2 temperature accuracy and influence of line width by comparison with N2 CARS as reference. Applied Physics B: Lasers and Optics, 2001, vol. 73, no. 2, pp.
165–172.
23. Switzer G., Sturgess G., Sloan D., Shouse D. Relation of CARS temperature fields to lean blowout performance in an aircraft gas turbine generic combustor. AIAA paper 94-3271, 1994.
24. Meyer T.R., Roy S., Lucht R.P., Gord J.R. Dual-pump dual-broadband CARS for exhaust-gas temperature and CO2–O2–N2 mole-fraction measurements in model gas-turbine combustors. Combustion and Flame, 2005, vol. 142, no. 1–2, pp. 52–61. doi: 10.1016/j.combustflame.2005.02.007
25. Reichardt T.A., Schrader P.E., Farrow R.L. Comparison of gas temperatures measured by coherent anti- Stokes Raman spectroscopy (CARS) of O2 and N2. Applied Optics, 2001, vol. 40, no. 6, pp. 741–747.
26. Seeger T. Moderne Aspekte der linearen und nichtlinearen Raman-Streuung zur Bestimmung thermodynamischer Zustandsgrößen in der Gasphase. Habilitation, University of Erlangen-Nuremberg, 2006.
27. Eckbreth A.C., Dobbs G.M., Stufflebeam J.H., Tellex P.A. CARS temperature and species measurements in augmented jet engine exhausts. Applied Optics, 1984, vol. 23, no. 9, pp. 1328–1339.
28. Magens E. Nutzung von Rotations-CARS zur Temperatur- und Konzentrationsmessung in Flammen. Dissertation, University of Erlangen-Nuremberg, 1993.
29. Rahn L.A., Palmer R.E., Koszykowski M.L., Greenhalgh D.A. Comparison of rotationally inelastic collision models for Q-branch Raman spectra of N2. Chemical Physics Letters, 1987, vol. 133, no. 6, pp. 513–516. doi: 10.1016/0009-2614(87)80069-6
30. Herzberg G. Molecular Spectra and Molecular Structure. 2nd ed. D. van Nostrand Company, Inc., 1963.
31. Rouillé G., Millot G., Saint-Loup R., Berger H. High-resolution stimulated Raman spectroscopy of O2. Journal of Molecular Spectroscopy, 1992, vol. 154, no. 2, pp. 372–382. doi: 10.1016/0022-2852(92)90215-A
32. Thumann A., Seeger T., Leipertz A. Evaluation of two different gas temperatures and their volumetric fraction from broadband N2 coherent anti-Stokes Raman spectroscopy spectra. Applied Optics, 1995, vol. 34, no. 18, pp. 3313–3317. doi: 10.1364/AO.34.003313


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика