doi: 10.17586/2226-1494-2015-15-2-218-226


S. Schlüter, S. Asbach, N. Popovska-Leipertz, T. Seeger, A. Leipertz

Read the full article  ';
Article in English

For citation: Schlüter S., Asbach S., Popovska-Leipertz N., Seeger Th., Leipertz A. A signal enhanced portable raman probe for anesthetic gas monitoring. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 2, pp. 218–226. (in English)

The spontaneous Raman scattering technique is an excellent tool for a quantitative analysis of multi-species gas mixtures. It is a noninvasive optical method for species identification and gas phase concentration measurement of all Raman active molecules, since the intensity of the species specific Raman signal is linearly dependent on the concentration. Applying a continuous wave (CW) laser it typically takes a few seconds to capture a gas phase Raman spectrum at room temperature. Nevertheless in contrast to these advantages the weak Raman signal intensity is a major drawback. Thus, it is still challenging to detect gas phase Raman spectra in alow-pressure regime with a temporal resolution of only a few 100 ms. In this work a fully functional gas phase Raman system for measurements in the low-pressure regime (p ≥ 980 hPa (absolute)) is presented. It overcomes the drawback of a weak Raman signal by using a multipass cavity. A description of the sensor setup and of the multipass arrangement will be presented. Moreover the complete functionality of the sensor system will be demonstrated by measurements at an anesthesia simulator under clinical relevant conditions and in comparison to a conventional gas monitor.

Keywords: Raman scattering; multi species gas sensor; low pressure; anesthesia monitor; multipass cavity; short sampling time; simultaneous online concentration information

Acknowledgements. This project is supported by the German Federal Ministry of Education and Research (BMBF), project grants No 13EX1015A, 13EX1015B and 13EX1015L. The authors thank in particular the Erlangen Graduate School in Advanced Optical Technologies (SAOT) and Medical Valley EMN.

1. Egermann J., Jonuscheit J., Seeger T., Leipertz A. Investigation of diode laser-based multi-species gas sensor concepts. Technisches Messen, 2001, vol. 68, no. 9, pp. 401–405.
2. Eichmann S.C., Kiefer J., Benz J., Kempf T., Leipertz A., Seeger T. Determination of gas composition in a biogas plant using a Raman-based sensor system. Measurement Science and Technology, 2014, vol. 25, no. 7, art. 075503. doi: 10.1088/0957-0233/25/7/075503
3. Kiefer J., Seeger T., Steuer S., Schorsch S., Weikl M.C., Leipertz A. Design and characterization of a Raman- scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant. Measurement Science and Technology, 2008, vol. 19, no. 8, art. 085408. doi: 10.1088/0957-
4. Schlüter S., Seeger T., Popovska-Leipertz N., Leipertz A. Laser basierte on-line-analyse von biogasen mit einer Raman-sonde. Technisches Messen, 2014, vol. 81, no. 11, pp. 546–553. doi: 10.1515/teme-2014-1050
5. Wilhelm W., Khuenl-Brady K., Beaufort A.M., Tassonyi E., Meistelman C. Neuromuscular monitoring: instructions of various national professional societies and their practical realization. Anaesthesist, 2000, vol. 49, no. 1, pp. S7–S8.
6. Basics of Anesthesia. Eds R.D. Miller, M.C. Pardo. 6th ed. Elsevier, 2011, 832 p.
7. Needham M.J., Denton M. Failure of medical air gas outlet. Anaesthesia, 2014, vol. 69, no. 5, pp. 523–524. doi: 10.1111/anae.12693
8. Cassidy C.J., Smith A., Arnot-Smith J. Critical incident reports concerning anaesthetic equipment: analysis of the UK National Reporting and Learning System (NRLS) data from 2006-2008. Anaesthesia, 2011, vol. 66, no. 10, pp. 879–888. doi: 10.1111/j.1365-2044.2011.06826.x
9. Schlüter S., Popovska-Leipertz N., Leipertz A., Seeger T. Concept for an anesthetic gas sensor based on Raman scattering. Proc. 7th Russian-Bavarian Conference on Biomedical Engineering. Erlangen, 2011.
10. Schlueter S., Krischke F., Popovska-Leipertz N., Seeger T., Breuer G., Jeleazcov C., Schuettler J., Leipertz A. Quantitative measurement of the volatile anesthetic agents and respiratory gases during anesthesia by a compact, robust and mobile sensor based on linear Raman scattering. Proc. Laser Applications to Chemical, Security and Environmental Analysis, LACSEA 2014. Seattle, USA, 2014.
11. Deublein D., Steinhauser A. Biogas from Waste and Renewable Resources. 2nd ed. Wiley-VCH, 2010, 578 p.
12. Taschek M., Egermann J., Schwarz S., Leipertz A. Quantitative analysis of the near-wall mixture formation process in a passenger car direct-injection diesel engine by using linear Raman spectroscopy. Applied Optics, 2005, vol. 44, no. 31, pp. 6606–6615. doi: 10.1364/AO.44.006606
13. Egermann J., Koebcke W., Ipp W., Leipertz A. Investigation of the mixture formation inside a gasoline direct injection engine by means of linear Raman spectroscopy. Proc. 28th Int. Symposium on Combustion. Edinburg, UK, 2000, vol. 28, no. 1, pp. 1145–1151.
14. Zhao H., Zhang S. Quantitative measurements of in-cylinder gas composition in a controlled auto-ignition combustion engine. Measurement Science and Technology, 2008, vol. 19, no. 1, art. 015409. doi: 10.1088/0957-0233/19/1/015409
15. Kiefer J., Kozlov D.N., Seeger T., Leipertz A. Local fuel concentration measurements for mixture formation diagnostics using diffraction by laser-induced gratings in comparison to spontaneous Raman scattering. Journal of Raman Spectroscopy, 2008, vol. 39, no. 6, pp. 711–721. doi: 10.1002/jrs.1965
16. Egermann J., Seeger T., Leipertz A. Application of 266-nm and 355-nm Nd:YAG laser radiation for the investigation of fuel-rich sooting hydrocarbon flames by Raman scattering. Applied Optics, 2004, vol. 43, no. 29, pp. 5564–5574. doi: 10.1364/AO.43.005564
17. Meier W., Keck O. Laser Raman scattering in fuel-rich flames: background levels at different excitation wavelengths. Measurement Science and Technology, 2002, vol. 13, no. 5, pp. 741–749. doi: 10.1088/0957- 0233/13/5/312
18. Meier W., Barlow R.S., Chen Y.-L., Chen J.-Y. Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction. Combustion and Flame, 2000, vol. 123, no. 3, pp. 326–343. doi: 10.1016/S0010-2180(00)00171-1
19. Kojima J., Nguyen Q.-V. Single-shot rotational Raman thermometry for turbulent flames using a lowresolution bandwidth technique. Measurement Science and Technology, 2008, vol. 19, no. 1, art. 015406. doi: 10.1088/0957-0233/19/1/015406
20. Gregonis D., van Wagenen R., Coleman D., Mitchell J. Commercial anesthetic. Respiratory gas monitor utilizing Raman spectroscopy. Proceedings of SPIE – The International Society of Optical Engineering, 1990, vol. 1336, pp. 247–255.
21. Wagenen R.A., Westenskow D.R., Benner R.E., Gregonis D.E., Coleman D.L. Dedicated monitoring of anesthetic and respiratory gases by Raman scattering. Journal of Clinical Monitoring, 1986, vol. 2, no. 4, pp. 215–222. doi: 10.1007/BF02851168
22. Lockwood G.G., Landon M.J., Chakrabarti M.K., Whitwam J.G. The Ohmeda Rascal II. A new gas analyser for anaesthetic use. Anaesthesia, 1994, vol. 49, no. 1, pp. 44–53.
23. Westenskow D.R., Coleman D.L. Can the Raman scattering analyzer compete with mass spectrometers: an affirmative reply. Journal of Clinical Monitoring, 1989, vol. 5, no. 1, pp. 34–36. doi: 10.1007/BF01618368
24. Schrader B., Bougeard D. Infrared and Raman Spectroscopy: Methods and Applications. NY, Wiley-VCH, 1995, 808 p.
25. Tobin M.C. Laser Raman Spectroscopy. In: Elving P.J., Kolthoff I.M. Chemical Analysis, a Series of Monographs on Analytical Chemistry and Its Application. V. 35. NY, Wiley-Interscience, 1971, pp. 1–30.
26. Leipertz A. Nutzung von laser-Raman-verfahren in der verbrennungstechnik. Chemie-Ingenieur-Technik, 1989, vol. 61, no. 1, pp. 39–48.
27. Seeger T. Moderne Aspekte der linearen und nichtlinearen Raman-streuung zur bestimmung thermodynamischer zustandsgrössen in der gasphase. ESYTEC Energie- und Systemtechnik, 2006, vol. 6.3.
28. Herzberg G. Molecular Spectra and Molecular Structure. V. 1. Spectra of Diatomic Molecules. Krieger, Malabar, 1963, 672 p.
29. Kiefer W., Bernstein H.J., Wieser H., Danyluk M. The vapor-phase Raman spectra and the ring-puckering vibration of some deuterated analogs of trimethylene oxide. Journal of Molecular Spectroscopy, 1972, vol. 43, no. 3, pp. 393–400. doi: 10.1016/0022-2852(72)90050-1
30. Hill R.A., Mulac A.J., Hackett C.E. Retroreflecting multipass cell for Raman scattering. Applied Optics, 1977, vol. 16, no. 7, pp. 2004–2006. doi: 10.1364/AO.16.002004
31. Hill R.A., Hartley D.L. Focused, multiple-pass cell for Raman scattering. Applied Optics, 1974, vol. 13, no. 1, pp. 186–192. doi: 10.1364/AO.13.000186
32. Daams H.-J., Hassel E.P. Multipass cavity: collinear and self-focusing. Applied Optics, 1983, vol. 22, no. 14, pp. 2066–2067. doi: 10.1364/AO.22.002066
33. Santavicca D.A. A high energy, long pulse Nd: Yag laser multipass cell for Raman scattering diagnostics. Optics Communications, 1979, vol. 30, no. 3, pp. 423–425. doi: 10.1016/0030-4018(79)90385-7
34. Waldherr G.A., Lin H. Gain analysis of an optical multipass cell for spectroscopic measurements in luminous environments. Applied Optics, 2008, vol. 47, no. 7, pp. 901–907. doi: 10.1364/AO.47.000901
35. Losev L.L., Yoshimura Y., Otsuka H., Hirakawa Y., Imasaka T. A multipass hydrogen Raman shifter for the generation of broadband multifrequencies. Review of Scientific Instruments, 2002, vol. 73, no. 5, p. 2200. doi: 10.1063/1.1468686

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2021 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.