doi: 10.17586/2226-1494-2015-15-2-267–274


A. V. Kuchko, A. V. Smirnov

Read the full article  ';
Article in Russian

For citation: Kuchko А.V., Smirnov A.V. SAXSEV 2.1 cross-platform application for data analysis of small-angle X-ray scattering from polydisperse systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 2, pp. 267–274.


The present paper discusses development and implementation of the cross-platform application with a graphical user interface for estimation of the particle volume fraction distribution function and fitting specific surface area to this distribution pattern. SAXSEV implements the method of statistical regularization for ill-posed mathematical tasks being solved with the use of Numpy, Scipy and MathPlotlib libraries. The main features of this software application are the ability to adjust the arguments grid of the desired function and the ability to select the optimal value of the regularization parameter. This parameter is selected by several specific and one common criteria. The software application consists of modules written in Python3. The modules are combined by common interface based on Tkinter library. Current version SAXSEV 2.1 was tested on the basis of Windows XP / Vista / 7/8, Ubuntu 14.1. SAXSEV 2.1 was used successfully at effectiveness study of statistical regularization method for analyzing dispersed system by SAXS, at research of the powder consisting from nanoparticles and composite materials with nanoparticles inclusion.

Keywords: small-angle X-ray scattering, polydisperse system, distribution of volume fractions, specific surface area, selection criteria for regularization parameter.

1. Guinier A., Fournet G. Small-Angle Scattering of X-rays. New-York, Wiley, 1955, 268 р.
2. Glatter O., Kratky O. Small Angle X-ray Scattering. London, Academic Press, 1982, 515 p.
3. Svergun D.I., Feigin L.A. Rentgenovskoe i Malouglovoe Rasseyanie [X-Ray and Small-Angle Scattering]. Moscow, Nauka Publ., 1986, 280 p.
4. Pauw B.R. Everything SAXS: small-angle scattering pattern collection and correction. Journal of Physics Condensed Matter, 2013, vol. 25, no. 38, art. 383201. doi: 10.1088/0953-8984/25/38/383201
5. Ilavsky J., Jemian P.R. Irena: tool suite for modeling and analysis of small-angle scattering. Journal of Applied Crystallography, 2009, vol. 42, no. 2, pp. 347–353. doi: 10.1107/S0021889809002222
6. Kohlbrecher J., Bressler I. Software package SASfit for fitting small-angle scattering curves. Available at: (accessed 04.10.2014).
7. Petoukhov M.V., Franke D., Shkumatov A.V., Tria G., Kikhney A.G., Gajda M., Gorba C., Mertens H.D.T., Konarev P.V., Svergun D.I. New developments in the ATSAS program package for small-angle scattering data analysis. Journal of Applied Crystallography, 2012, vol. 45, no. 2, pp. 342–350. doi:
8. Data Analysis Software ATSAS 2.5.2. Available at: (accessed 04.10.2014).
9. Alves C., Pedersen J.S., Oliveira C.L.P. Modelling of high-symmetry nanoscale particles by small-angle scat-tering. Journal of Applied Crystallography, 2014, vol. 47, no. 1, pp. 84–94.
doi: 10.1107/S1600576713028549.
10. Al'myasheva O.V., Fedorov B.A., Smirnov A.V., Gusarov V.V. Razmer, morfologiya i struktura chastits nanoporoshka dioksida tsirkoniya, poluchennogo v gidrotermal'nykh usloviyakh [Size structure and morphology of zirconia nanopowder particles obtained under hydrothermal conditions]. Nanosystems: Physics, Chemistry, Mathematics, 2010, vol. 1, no. 1, pp. 26–36.
11. Smirnov A.V., Fedorov B.A., Tomkovich M.V., Al'myasheva O.V., Gusarov V.V. Core-shell nanoparticles forming in the ZrO2-Gd2O3-H2O system under hydrothermal conditions. Doklady Physical Chemistry, 2014, vol. 456, no. 1, pp. 71–73. doi: 10.1134/S0012501614050042
12. Smirnov A.V., Fedorov B.A., Petrov N.A., Gusarov V.V., Tomkovich M.V., Gusarov V.V. Structural features of carbon nanoparticles produced by chlorination of β-SiC nanopowder. Doklady Physical Chemistry, 2014, vol. 458, no. 4, pp. 430–435. doi: 10.1134/S0012501614100017
13. Fomicheva E.E., Temnov D.E., Smirnov A.V., Fedorov B.A. Vliyanie dispersionnogo napolnitelya na osnove alyuminiya na strukturu i svoistva polipropilena [Dispersive aluminium filling material influence on the polypropylene structure and properties]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2009, no. 6 (64), pp. 59–65.
14. Smirnov A.V., Fedorov B.A., Temnov D.E., Fomicheva E.E. Strukturnye i elektretnye svoistva polipropilena s razlichnym soderzhaniem amorfnogo dioksida kremniya 
15. Small-Angle Scattering - SAXS, XRD, SC-XRD, MICRO. Available at: and-elemental-analysis/small-angle-x-ray-scattering/saxs/small-angle-scattering.html (accessed 04.10.2014).
16. Multipurpose X-ray Diffraction System. Available at: (accessed 04.10.2014).
17. Tyrsted C., Becker J., Hald P., Bremholm M., Pedersen J.S., Chevallier J., Cerenius Y., Iversen S.B., Iversen B.B. In-situ synchrotron radiation study of formation and growth of crystalline CexZr1-xO2 nanoparticles synthesized in supercritical water. Chemistry of Materials, 2010, vol. 22, no. 5, pp. 1814–1820. doi: 10.1021/cm903316s
18. Plavnik G.M., Kozhevnikov A.I., Shishkin A.V. Primenenie metoda statisticheskoi regulyarizatsii dlya obrabotki dannykh malouglovogo rasseyaniya rentgenovskikh luchei. Nakhozhdenie raspredeleniya neodnorodnostei po razmeram [Application of the statistical regularization method for data processing of small-angle X-ray scattering. Finding the uniform distribution by size]. Doklady - Akademiya Nauk SSSR, 1976, vol. 226, no. 3, pp. 630–633.
19. Kuchko A.V., Smirnov A.V. Raschet funktsii raspredeleniya ob"emov nanochastits i udel'noi poverkhnosti metodom statisticheskoi regulyarizatsii iz indikatrisy rentgenovskogo malouglovogo rasseyaniya [Calculation of the distribution function of the volume and specific surface area of nanoparticles by the method of statistical regularization of the X-ray small-angle scattering indicatrix]. Nanosystems: Physics, Chemistry, Mathematics, 2012, vol. 3, no. 3, pp. 76–91.
20. Tikhonov A.N., Arsenin V.Ya. Metody Resheniya Nekorrektnykh Zadach [Methods for Solving Ill-Posed Problems]. Moscow, Nauka Publ., 1979, 284 p.
21. Lis'ev G.A., Popova I.V. Tekhnologii Podderzhki Prinyatiya Reshenii [Technologies of Decision Support]. Moscow, Flinta Publ., 2011, 133 p.
22. Svergun D.I. Determination of the regularization parameter in indirect-transform methods using perceptual criteria. Journal of Applied Crystallography, 1992, vol. 25, no. 4, pp. 495–503. doi:
23. Pilone D., Pitman N. UML 2.0 in a Nutshell. Sebastopol, O'Reilly Media, 2005, 234 р.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2021 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.