doi: 10.17586/2226-1494-2015-15-2-173-195


METHODS AND TECHNIQUE FOR THERMOPOWER AND ELECTRICAL CONDUCTIVITY MEASUREMENTS OF THERMOELECTRIC MATERIALS AT HIGH TEMPERATURES

A. T. Burkov, A. I. Fedotov, A. A. Kasyanov, R. I. Panteleev, T. Nakama


Read the full article  ';
Article in Russian

For citation: Burkov A.T., Fedotov A.I., Kasyanov A.A., Panteleev R.I., Nakama T. Methods and technique of thermopower and electrical conductivity measurements of thermoelectric materials at high temperatures. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 2, pp. 173–195. (in Russian)

Abstract

The principles and methods of thermopower and electrical conductivity measurements at high temperatures (100 – 1000 K) are reviewed. These two properties define the so-called power factor of thermoelect ric materials. Moreover, in combination with thermal conductivity they give the efficiency of thermoelectric conversion. In spite of a principal obtained by different groups and hinders a realistic estimate of the potential thermoelectric efficiency of new materials. The lack of a commonly accepted reference material for thermopower exaggerates the problem. Therefore, it is very important to have a clear understanding of the capabilities and limitations of the measuring methods and set-ups. The review article deals with the definitions of the thermoelectric parameters and principles of their experimental determination. The metrological characteristics of the state-of-the-art experimental set-ups for high temperature measurements are analyzed. simplicity of the measurement methods of these properties, their practical realization is rather complicated, especially at high temperatures. This leads to large uncertainties in determination of the properties, complicates comparison of the results


Keywords: thermopower, electrical conductivity, thermoelectric materials, high temperatures, measurements.

References
1. Stil'bans L.S. Fizika Poluprovodnikov [Physics of Semiconductors]. Moscow, Sovetskoe Radio Publ., 1967, 452 p.
2. Anatychuk L.I. On the discovery of thermoelectricity by Volta. Journal of Thermoelectricity, 2004, no. 2, pp. 5–10.
3. Ioffe A.F., Stil'bans L.S., Iordanishvili E.K., Stavitskaya T.S. Termoelektricheskoe Okhlazhdenie [Thermoelectric Cooling]. Moscow-Leningrad, Academy of Sciences USSR Publ., 1956, 112 p.
4. Ioffe A.F. Fizika Poluprovodnikov [Physics of Semiconductors]. Moscow, Academy of Sciences USSR Publ., 1957, 108 p.
5. Ioffe A.F. Semiconductor Thermoelements and Thermoelectric Cooling. London, Infosearch, 1957, 184 p.
6. Manasyan Yu.G. Sudovye Termoelektricheskie Ustroistva i Ustanovki [Ship Thermoelectric Devices and Equipment]. Leningrad, Sudostroenie Publ., 1968, 285 p.
7. Nye J.F. Physical Properties of Crystals: Their Representation by Tensors and Matrices. Oxford University Press, 1957, 329 p.
8. Landau L.D., Lifshits E.M. Kurs Teoreticheskoi Fiziki. T. 10. Fizicheskaya Kinetika [Course of Theoretical Physics. V. 10. Physical Kinetics.]. Moscow, Nauka Publ., 1979, 528 p.
9. Barnard R.D. Thermoelectricity in Metals and Alloys. London, Taylor & Francis ltd., 1972.
10. Bowler N. Theory of four-point direct-current potential drop measurements on a metal plate. Research in Nondestructive Evaluation, 2006, vol. 17, no. 1, pp. 29–48. doi: 10.1080/09349840600582092
11. Bowler N. Four-point potential drop measurements for materials characterization. Measurement Science and Technology, 2011, vol. 22, no. 1, art. 012001. doi: 10.1088/0957-0233/22/1/012001
12. Pavlov L.P. Metody Izmereniya Parametrov Poluprovodnikovykh Materialov [Methods for Measuring the
Parameters of Semiconductor Materials]. 2nd ed. Moscow, Vysshaya Shkola Publ., 1987, 239 p.
13. van der Pauw L.J. A method of measuring specific resistivity and Hall effect of disks of arbitrary shape. Philips Research Reports, 1958, vol. 13, no. 1, pp. 1–9.
14. van der Pauw L.J. A method of measuring specific resistivity and Hall effect of lamellae of arbitrary shape. Philips Technical Review, 1958, vol. 20, no. 8, pp. 220–224.
15. Webster J.G. The Measurement, Instrumentation, and Sensors. Handbook. CRC-Press, 1999, 1500 p.
16. Kontorovich M.I. Operatsionnoe Ischislenie i Nestatsionarnye Yavleniya v Elektricheskikh Tsepyakh [Operational Calculus and Nonstationary Phenomena in Electrical Circuits]. 2nd ed. Moscow-Leningrad, GITTL Publ., 1955, 230 p.
17. Borelius G., Keesom W.H., Johansson C.H., Linde J.O. Establishment of an absolute scale for the thermoelectric force. Proc. Kon. Akad. Amsterdam, 1932, vol. 35, pp. 10–14.
18. Nystrom J. Themospannungen. Landolt-Bornstein: Zahlenwerte und Funktionen. Berlin, Springer, 1959, vol. 2, pp. 930–977.
19. Borelius G., Keesom W.H., Johansson C.H. Measurement of the thermo-electric Thomson effect down to the temperature of liquid hydrogen. Commun. Phys. Lab. Leiden, 1928, vol. 31, no. 10, pp. 1046–1058.
20. Rudnitskii A.A. Termoelektricheskie Svoistva Blagorodnykh Metallov i ikh Splavov [Thermoelectric Properties of Noble Metals and their Alloys.]. Moscow, AS USSR Publ., 1956, 148 p.
21. Cusack N., Kendall P. The absolute scale of thermoelectric power at high temperatures. Proceedings of the Physical Society, 1958, vol. 72, no. 5, pp. 898–901. doi: 10.1088/0370-1328/72/5/429
22. Lander J.J. Measurements of Thomson coefficients for metals at high temperatures and of Peltier coefficients for solid-liquid interfaces of metals. Physical Review, 1948, vol. 74, no. 4, pp. 479–488. doi:
10.1103/PhysRev.74.479
23. Roberts R.B. Absolute scale of thermoelectricity. Philosophical Magazine, 1977, vol. 36, no. 1, pp. 91–107.
24. Roberts R.B. Absolute scale of thermoelectricity II. Philosophical Magazine, 1981, vol. 43, no. 6, pp. 1125–1135.
25. Roberts R.B., Righini F., Compton R.C. Absolute scale of thermoelectricity III. Philosophical Magazine, 1985, vol. 52, no. 6, pp. 1147–1163.
26. Burkov A.T., Heinrich A., Konstantinov P.P., Nakama T., Yagasaki K. Experimental set-up for thermopower and resistivity measurements at 100-1300 K. Measurement Science and Technology, 2001, vol. 12, no. 3, pp. 264–272. doi: 10.1088/0957-0233/12/3/304
27. Moore J.P., Graves R.S. Absolute Seebeck coefficient of platinum from 80 to 340 K and the thermal and electrical conductivities of lead from 80 to 400 K. Journal of Applied Physics, 1973, vol. 44, no. 3, pp. 1174–
1178. doi: 10.1063/1.1662324
28. Burkov A.T. Measurements of resistivity and thermopower: principles and practical realization. Thermoelectric Handbook: Macro to Nano / Ed. D.M. Rowe. London-NY, CRC Press, 2006, pp. 22-1-12 .
29. Horne R.A. Errors associated with thermoelectric power measurements using small temperature differences. Review of Scientific Instruments, 1960, vol. 31, no. 4, pp. 459–460. doi: 10.1063/1.1717013
30. Testardi L.R., McConnell G.K. Measurement of the Seebeck coefficient with small temperature differences. Review of Scientific Instruments, 1961, vol. 32, no. 9, pp. 1067–1068. doi: 10.1063/1.1717624
31. Berglund C.N., Beairsto R.C. An automatic technique for accurate measurements of seebeck coefficient. Review of Scientific Instruments, 1967, vol. 38, no. 1, pp. 66–68. doi: 10.1063/1.1720530
32. Aubin M., Ghamlouch H., Fournier P. Measurement of the Seebeck coefficient by an ac technique: application to high-temperature superconductors. Review of Scientific Instruments, 1993, vol. 64, no. 10, pp. 2938– 2941. doi: 10.1063/1.1144387
33. Resel R., Gratz E., Burkov A.T., Nakama T., Higa M., Yagasaki K. Thermopower measurements in magnetic fields up to 17 tesla using the toggled heating method. Review of Scientific Instruments, 1996, vol. 67, no. 5, pp. 1970 1075.
34. Caskey G.R., Sellmyer D.J., Rubin L.G. A Technique for the rapid measurement of thermoelectric power. Review of Scientific Instruments, 1969, vol. 40, no. 10, pp. 1280–1282. doi: 10.1063/1.1683764
35. Chaikin P.M., Kwak J.F. Apparatus for thermopower measurements on organic conductors. Review of Scientific Instruments, 1975, vol. 46, no. 2, pp. 218–220. doi: 10.1063/1.1134171
36. Putti M., Cimberle M.R., Canesi A., Foglia C., Siri A.S. Thermopower measurements of high-temperature superconductors: experimental artifacts due to applied thermal gradient and a technique for avoiding them.
Physical Review B – Condensed Matter and Materials Physics, 1998, vol. 58, no. 18, pp. 12344–12349.
37. Chen F., Cooley J.C., Hults W.L., Smith J.L. Low-frequency ac measurement of the Seebeck coefficient. Review of Scientific Instruments, 2001, vol. 72, no. 11, pp. 4201–4206. doi: 10.1063/1.1406930
38. Wood C., Zoltan D., Stapfer G. Measurement of Seebeck coefficient using a light pulse. Review of Scientific Instruments, 1985, vol. 56, no. 5, pp. 719–722. doi: 10.1063/1.1138213
39. D'Angelo J., Downey A., Hoganc T. Temperature dependent thermoelectric material power factor measurement system. Review of Scientific Instruments, 2010, vol. 81, art. 075107. doi: 10.1063/1.3465326
40. Ravichandran J., Kardel J.T., Scullin M.L., Bahk J.-H., Heijmerikx H., Bowers J.E., Majumdar A. An apparatus for simultaneous measurement of electrical conductivity and thermopower of thin films in the temperature range of 300-750 К. Review of Scientific Instruments, 2011, vol. 82, no. 1, art. 015108.
41. Burkov A.T., Dvunitkin V.G. Matal holder for high-temperature measurements of thermal EMF and electrical
resistance. Instruments and Experimental Techniques New York, 1985, vol. 28, no. 5, pp. 1222–1223.
42. Petrov A.V. Metodika izmereniya teploprovodnosti poluprovodnikov pri vysokikh temperaturakh [Technique for measuring the thermal conductivity at high temperatures]. Termoelektricheskie Svoistva Poluprovodnikov [Thermoelectric Properties of Semiconductors]. Moscow, Akademiya Nauk Publ., 1963, pp. 27–35.
43. Dasgupta Т., Umarji A.M. Apparatus to measure high-temperature thermal conductivity and thermoelectric power of small specimens. Review of Scientific Instruments, 2005, vol. 76, no. 9, art. 094901. doi: 10.1063/1.2018547
44. Zhou Z., Uher C. Apparatus for Seebeck coefficient and electrical resistivity measurements of bulk thermoelectric materials at high temperature. Review of Scientific Instruments, 2005, vol. 76, pp. 023901-1–023901- 5. doi: 10.1063/1.1835631
45. Iwanaga S., Toberer E.S., LaLonde A., Snyder E.S. A high temperature apparatus for measurement of the Seebeck coefficient. Review of Scientific Instruments, 2011, vol. 82, no. 6, art. 063905. doi:
10.1063/1.3601358
46. Byl C., Berardan D., Dragoe N. Experimental setup for measurements of transport properties at high temperature and under controlled atmosphere. Measurement Science and Technology, 2012, vol. 23, no. 3, art. 035603. doi: 10.1088/0957-0233/23/3/035603
47. Martin J., Tritt Т., Uher C. High temperature Seebeck coefficient metrology. Journal of Applied Physics, 2010, vol. 108, no. 12, art. 121101. doi: 10.1063/1.3503505
48. Polvani D.A., Meng J.F., Hasegawa M., Badding J.V. Measurement of the thermoelectric power of very small samples at ambient and high pressures. Review of Scientific Instruments, 1999, vol. 70, no. 9, pp. 3586–3589.
49. Polvani D.A., Fei Y., Meng J.F., Badding J.V. A technique for thermoelectric power measurements at high pressure in an octahedral multianvil press. Review of Scientific Instruments, 2000, vol. 71, no. 8, pp. 3138–3140.
50. Choi E.S., Kang H., Jo Y.J., Kang W. Thermoelectric power measurement under hydrostatic pressure using a self-clamped pressure cell. Review of Scientific Instruments, 2002, vol. 73, no. 8, pp. 2999–3002. doi: 10.1063/1.1489076
51. Mun E., Bud'ko S.L., Torikachvili M.S., Canfield P.C. Experimental setup for the measurement of the thermoelectric power in zero and applied magnetic field. Measurement Science and Technology, 2010, vol. 21, no. 5, art. 055104. doi: 10.1088/0957-0233/21/5/055104
52. Yuan B., Tao Q., Zhao X., Cao K., Cui T., Wang X., Zhu P. In situ measurement of electrical resistivity and Seebeck coefficient simultaneously at high temperature and high pressure. Review of Scientific Instruments,2014, vol. 85, no. 1, art. 013304. doi: 10.1063/1.4862654


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика