doi: 10.17586/2226-1494-2015-15-2-241-245


PROTECTIVE COATINGS OF FIBER BRAGG GRATING FOR MINIMIZING OF MECHANICAL IMPACT ON ITS WAVELENGTH CHARACTERISTICS

A. S. Munko, S. V. Varzhel, S. V. Arkhipov, A. N. Zabiyakin


Read the full article  ';
Article in Russian

For citation: Munko A.S., Varzhel S.V., Arkhipov S.V., Zabiyakin A.N. Protective coatings of fiber Bragg grating for minimizing of mechanical impact on its wavelength characteristics. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 2, pp. 241–245.

Abstract
The paper deals with the scheme for the study of the Bragg wavelength shift dependence on the applied tensile force. Samples of fiber Bragg gratings with different coatings have been studied: the restored acrylate coating, the heatshrinkable fusion splice protection sleeve without metal rod, the heat-shrinkable fusion splice protection sleeve with a metal rod, the metal capillary, polyvinylchloride tube. For different coatings of diffractive structure, dependences of wavelength shift for the Bragg grating resonance have been obtained on the tensile strength applied to the ends of an optical fiber. It was determined that the studied FBG coatings give the possibility to reduce the mechanical impact on the Bragg wavelength shift for 1.1-15 times as compared to an uncoated waveguide. The most effective version of coated fiber Bragg grating is the heatshrinkable fusion splice protection sleeve with a metal rod. When the force (equal to 6 N) is applied to the 100 mm optical fiber area with the inscribed diffractive structure, the Bragg wavelength shift is 7.5 nm for the unprotected sample and 0.5 nm for the one coated with the heat-shrinkable fusion splice protection sleeve.

Keywords: phase interferometric sensor, fiber Bragg grating, Bragg wavelength shift, sensing element, elliptical stress cladding, birefringent optical fiber, phase mask.

Acknowledgements. The work was carried out in ITMO University under financial support of the Ministry of Education and Science of the Russian Federation (project #02.G25.31.0044)

References
1. Hill K.O., Fujii Y., Johnson D.C., Kawasaki B.S. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Applied Physics Letters, 1978, vol. 32, no. 10, pp. 647–649. doi: 10.1063/1.89881
2. Meltz G., Morey W.W., Glenn W.H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, 1989, vol. 14, no. 15, pp. 823–825. doi: 10.1364/OL.14.000823
3. Okosi T., Okamoto K., Otsu M., Nisihara H., Kuma K., Hatate K. Fiber-Optic Sensors. Leningrad, Energoatomidat Publ., 1991, 256 p. (in Russian)
4. Lefevre H. The Fiber-Optic Gyroscope. London, Artech House, 1992, 314 p.
5. Varzhel S.V., Strigalev V.E. Metod ustraneniya vliyaniya signala pomekhi na chuvstvitel'nost' priema gidroakusticheskoi antenny na osnove volokonnykh Breggovskikh reshetok [Method for eliminating the noise signal influence on the sensitivity of receiving hydroacoustic antenna based on fiber Bragg gratings]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2010, no. 5 (69), pp. 5–8.
6. Meshkovsky I.K., Varzhel S.V., Belikin M.N., Kulikov A.V., Brunov V.S. Termicheskii otzhig reshetok Bregga pri izgotovlenii volokonno-opticheskikh fazovykh interferometricheskikh datchikov [Thermal
Annealing of Bragg Grating on Manufacturing of Fiber-Optic Phase Sensor]. Izv. vuzov. Priborostroenie, 2013, vol. 56, no. 5, pp. 91–93.
7. Lawrence C.M., Nelson D.V., Udd E., Bennett T. A fiber optic sensor for transverse strain measurement. Experimental Mechanics, 1999, vol. 39, no. 3, pp. 202–209.
8. Meltz G., Morey W.W. Bragg grating formation and germanosilicate fiber photosensitivity. Proceedings of SPIE - The International Society for Optical Engineering, 1991, vol. 1516, pp. 185–199. doi:
10.1117/12.51164
9. Yoffe G.W., Krug P.A., Ouellette F., Thorncraft D.A. Passive temperature-compensating package for optical fiber gratings. Applied Optics, 1995, vol. 34, no. 30, pp. 6859–6861.
10. Lee S.M., Gu X. Passive temperature compensating package for optical long period fiber gratings. Journal of the Optical Society of Korea, 1999, vol. 3, no. 2, pp. 74–79.
11. Othonos A. Fiber Bragg gratings. Review of Scientific Instruments, 1997, vol. 68, no. 12, pp. 4309–4341.
12. Malo B., Johnson D.C., Bilodeau F., Albert J., Hill K.O. Single-excimer-pulse writing of fiber gratings by use of a zero-order nulled phase mask: grating spectral response and visualization of index perturbations. Optics Letters, 1993, vol. 18, no. 15, pp. 1277–1279.
13. Varzhel S.V., Kulikov A.V., Strigalev V.E., Meshkovsky I.K. Recording Bragg gratings in a birefringent optical fiber with a single 20-ns pulse of an excimer laser. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2012, vol. 79, no. 4, pp. 257–259. doi: 10.1364/JOT.79.000257
14. Meshkovskiy I.K., Strigalev V.E., Kulikov A.V., Varzhel' S.V. Bragg gratings induced in birefringent optical fiber with an elliptical stress cladding. Journal of Photonics, 2013, art. 936036. doi: 10.1155/2013/936036
15. Archambault J.-L., Reekie L., Russell P.St.J. 100% reflectivity Bragg reflectors produced in optical fibres by single excimer laser pulses. Electronics Letters, 1993, vol. 29, no. 5, pp. 453–455. doi: 10.1049/el:19930303
16. Eron'jan M.A. Process of Manufacture of Fiberous Light Guides Preserving Radiation Polarization. Patent RF, no. RU2155359, 2000.
17. Bureev S.V., Dukel'skii K.V., Eronyan M.A., Komarov A.V., Levit L.G., Khokhlov A.V., Zlobin P.A., Strakhov V.I. Processing large blanks of anisotropic single-mode lightguides with elliptical cladding. Journal of Optical Technology (A Translation of Opticheskii Zhurnal), 2007, vol. 74, no. 4, pp. 297–298.
18. Aksarin S.M., Arkhipov S.V., Varzhel S.V., Kulikov A.V., Strigalev V.E. Issledovanie zavisimosti parametrov anizotropnykh odnomodovykh volokonnykh svetovodov ot diametra namotki [Dependence investigation of the anisotropic single-mode fiber parameters on a windings diameter]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 6 (88), pp. 22–26.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика