Keywords: Bragg grating, femtosecond laser, point-by-point inscription, anisotropic fiber, acrylate coating.
Acknowledgements. The work was carried out in Technical University of Berlin and ITMO University under financial support of the Ministry of Education and Science of the Russian Federation (project № 02.G25.31.0044)
References
1. Grobnic D., Mihailov S.J., Smelser C.W., Ding H.M. Sapphire fiber Bragg grating sensor made using femtosecond
laser radiation for ultrahigh temperature applications. IEEE Photonics Technology Letters, 2004, vol.
16, no. 11, pp. 2505–2507. doi: 10.1109/LPT.2004.834920
2. Jovanovic N., Еslund M., Fuerbach A., Jackson S.D., Marshall G.D., Withford M.J. Narrow linewidth,100 W
cw Yb3+-doped silica fiber laser with a point-by-point Bragg grating inscribed directly into the active core.
Optics Letters, 2007, vol. 32, no. 19, pp. 2804–2806. doi: 10.1364/OL.32.002804
3. Tre'panier F., Brochu G., Morin M., Mailloux A. High-end FBG design and manufacturing for industrial lasers,
sensing and telecommunications. Proc. Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides,
BGPP 2014. Barcelona, Spain, 2014, p. 2716.
4. Lai Y., Martinez A., Khrushchev I., Bennion I. Distributed Bragg reflector fiber laser fabricated by femtosecond
laser inscription. Optics Letters, 2006, vol. 31, no. 11, pp. 1672–1674. doi: 10.1364/OL.31.001672
5. Wikszak E., Thomas J., Burghoff J., Ortac B., Limpert J., Nolte S., Fuchs U., Tunnermann A. Erbium fiber
laser based on intracore femtosecond-written fiber Bragg grating. Optics Letters, 2006, vol. 31, no. 16, pp.
2390–2392. doi: 10.1364/OL.31.002390
6. Jovanovic N., Thomas J., Williams R.J., Steel M.J., Marshall G.D., Fuerbach A., Nolte S., Tunnermann A.,
Withford M.J. Polarization-dependent effects in point-by-point fiber Bragg gratings enable simple, linearly
polarized fiber lasers. Optics Express, 2009, vol. 17, no. 8, pp. 6082–6095. doi: 10.1364/OE.17.006082
7. Gattass R.R., Mazur E. Femtosecond laser micromachining in transparent materials. Nature Photonics, 2008,
vol. 2, no. 4, pp. 219–225. doi: 10.1038/nphoton.2008.47
8. Schaffer C.B., Brodeur A., Mazur E. Laser-induced breakdown and damage in bulk transparent materials induced
by tightly focused femtosecond laser pulses. Measurement Science and Technology, 2001, vol. 12, no.
11, pp. 1784–1794. doi: 10.1088/0957-0233/12/11/305
9. Grobnic D., Smelser C.W., Mihailov S.J., Walker R.B. Long-term thermal stability tests at 1000 °C of silica
fiber Bragg grating made with ultrafast laser radiation. Measurement Science and Technology, 2006, vol. 17,
no. 5, pp. 1009–1013. doi: 10.1088/0957-0233/17/5/S12
10. Martinez A., Khrushchev I.Y., Bennion I. Thermal properties of fibre Bragg gratings inscribed point-by-point
by infrared femtosecond laser. Electronics Letters, 2005, vol. 41, no. 4, pp. 176–178. doi:
10.1049/el:20057898
11. Vasil'ev S.A., Medvedkov O.I., Korolev I.G., Bozhkov A.S., Kurkov A.S., Dianov E.M. Fibre gratings and
their applications. Quantum Electronics, 2005, vol. 35, no. 12, pp. 1085–1103. doi:
10.1070/QE2005v035n12ABEH013041
12. Geernaert T., Kalli K., Koutsides C., Komodromos M., Nasilowski T., Urbanczyk W., Wojcik J., Berghmans
F., Thienpont H. Point-by-point fiber Bragg grating inscription in free-standing step-index and photonic crystal
fibers using near-IR femtosecond laser. Optics Letters, 2010, vol. 35, no. 10, pp. 1647–1649. doi:
10.1364/OL.35.001647
13. Eron'jan M.A. Process of Manufacture of Fiberous Light Guides Preserving Radiation Polarization. Patent
RF, no. RU2155359, 2000.
14. Bureev S.V., Dukel'skii K.V., Eron'yan M.A., Komarov A.V., Levit L.G., Khokhlov A.V., Zlobin P.A.,
Strakhov V.I. Processing large blanks of anisotropic single-mode lightguides with elliptical cladding. Journal
of Optical Technology (A Translation of Opticheskii Zhurnal), 2007, vol. 74, no. 4, pp. 297–298.
15. Andreev A.G., Kryukov I.I., Mazunina T.V., Poloskov A.A., Tsibinogina M.K., Bureev S.V., Eron'yan M.A.,
Komarov A.V., Ter-Nersesyants E.V. Increasing the birefringence in anisotropic single-mode fiber
lightguides with an elliptical stress cladding. Journal of Optical Technology (A Translation of Opticheskii
Zhurnal), 2012, vol. 79, no. 9, pp. 608–609. doi: 10.1364/JOT.79.000608
16. Petrov A.A., Varzhel S.V., Kulikov A.V., Palanjyan D.A., Gribaev A.I., Konnov K.A. Zapis' reshetok Bregga
ArF eksimernym lazerom v anizotropnom opticheskom volokne [Record of Bragg grating in an anisotropic
optical fiber using ArF excimer laser]. Izvestiya vuzov. Priborostroenie, 2014, vol. 57, no. 6, pp. 31–36.
17. Varzhel S.V., Kulikov A.V., Zakharov V.V., Aseev V.A. Odnoimpul'snaya zapis' i vizualizatsiya
volokonnykh reshetok Bregga tipa II [Single-pulse writing and visualization of type II fiber Bragg gratings].
Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 5 (81), pp.
25–28.
18. Mihailov S.J., Smelser C.W., Lu P., Walker R.B., Grobnic D., Ding H., Henderson G., Unruh J. Fiber Bragg
gratings made with a phase mask and 800-nm femtosecond radiation. Optics Letters, 2003, vol. 28, no. 12, pp.
995–997.