doi: 10.17586/2226-1494-2015-15-3-532-537


INFLUENCE OF DFT-FUNCTIONAL AND BASIS SET OF FUNCTIONS ON CALCULATION RESULTS OF THE STRUCTURAL AND ENERGY PROPERTIES OF Ag2 MOLECULAR CLUSTER

M. V. Stolyarchuk, A. I. Sidorov


Read the full article  ';
Article in English

For citation: Stolyarchuk M.V., Sidorov A.I. Influence of DFT-functional and basis set of functions on calculation results of the structural and energy properties of Ag2 molecular cluster. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 3, pp. 532–537.

Abstract

The paper deals with the impactassessmentforthe exchange-correlation functionalsand Slater-type basis sets on the properties of molecular cluster Ag2carried outwithin the framework of the density functional theory. For comparative analysis of these properties equilibrium bond length and the total binding energy of the molecular cluster were used. The effect of the change of all-electron basis sets dimension within four exchange-correlation functionals of different categories was analyzed. We also discuss the results obtained for the basis sets with different levels of frozen-core approximation. Results obtained with the gradient corrected exchange-correlation functionals and all-electron QZ4P basis set show the best agreement with the experimentally determined values. Small size frozen-core approximation reduces the computation time,and the deviation of the calculated values of the binding energy takes a smaller value compared to all-electron basis sets. The results are of methodological interest for the correct calculation of the characteristics of molecular clusters with the expected accuracy.


Keywords: density functional theory, quantum chemical calculation, molecular cluster, silver, exchange-correlation functional.

Acknowledgements. This work was financially supported by the Ministry of Education and Science of the Russian Federation in the context of scientific-research work within the framework of the state task project part in the scientific work area for the task № 11.1227.2014/K.

References
1. Zhang L., Wang E. Metal nanoclusters: new fluorescent probes for sensors and bioimaging. Nano Today, 2014, vol. 9, no. 1, pp. 132–157. doi: 10.1016/j.nantod.2014.02.010
2. Teo B.K. A perspective on the science of clusters. Journal of Cluster Science, 2014, vol. 25, no. 1, pp. 5– 28. doi: 10.1007/s10876-013-0678-9
3. Dyomichev I.A., Egorov V.I., Postnikov E.S., Sgibnev E.M., Sidorov A.I., Khrushcheva T.A. Vliyanie ionov tseriya na pogloshchenie i lyuminestsentsiyu molekulyarnykh klasterov serebra v silikatnykh steklakh posle ionnogo obmena [Cerium ions influence on a luminescence and absorption of molecular silver clusters in silicate glasses after ion exchange]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 2 (84), pp. 27–32.
4. Kuznetsov A.S., Tikhomirov V.K., Moshchalnikov V.V. Polarization memory of white luminescence of Ag nanoclusters dispersed in glass host. Optics Express, 2012, vol. 20, no. 19, pp. 21576–21582.
5. Dubrovin V.D., Ignatiev A.I., Nikonorov N.V., Sidorov A.I., Shakhverdov T.A., Agafonova D.S. Luminescence of silver molecular clusters in photo-thermo-refractive. Optical Materials, 2014, vol. 36, no. 4, pp. 753–759. doi: 10.1016/j.optmat.2013.11.018
6. Cramer C.J., Truhlar D.G. Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics, 2009, vol. 11, no. 46, pp. 10757–10816. doi: 10.1039/b907148b
7. Matulis V.E., Ivashkevich O.A., Gurin V.S. DFT study of electronic structure and geometry of neutral and anionic silver clusters. Journal of Molecular Structure: THEOCHEM, 2003, vol. 664–665, pp. 291–308. doi: 10.1016/j.theochem.2003.10.003
8. Tsipis A.C. DFT flavor of coordination chemistry. Coordination Chemistry Reviews, 2014, vol. 272, pp. 1– 29. doi: 10.1016/j.ccr.2014.02.023
9. Zhao S., Li Z.-H., Wang W.N., Liu Z.-P., Fan K.-N., Xie Y., Schaefer H.F. Is the uniform electron gas limit important for small Ag clusters? Assessment of different density functionals for Agn (n≤4). Journal of Chemical Physics, 2006, vol. 124, no. 18, art. 184102. doi: 10.1063/1.2193512
10. Zhao J., Luo Y., Wang G. Tight-binding study of structural and electronic properties of silver clusters. European Physical Journal D, 2001, vol. 14, no. 3, pp. 309–316. doi: 10.1007/s100530170197
11. Popa M.V. The electronic proprieties of the silver clusters. International Journal of Computational and Theoretical Chemistry, 2014, vol. 2, no. 6, pp. 46–68. doi: 10.11648/j.ijctc.20140206.11
12. Velde G., Bickelhaupt F.M., Baerends E.J., Fonseca Guerra C., van Gisbergen S.J.A., Snijders J.G., Ziegler T. Chemistry with ADF. Journal Computational Chemistry, 2001, vol. 22, no. 9, pp. 931–967. doi: 10.1002/jcc.1056
13. Hohenberg P., Kohn W. Inhomogeneous electron gas. Physical Review, 1964, vol. 136, no. 3B, pp. B864– B871. doi: 10.1103/PhysRev.136.B864
14. Parr R.G., Yang W. Density-Functional Theory of Atoms and Molecules. NY, Oxford University Press, 1990, 333 p.
15. Vosko S.H., Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of Physics, 1980, vol. 58, no. 8, pp. 1200–1211. doi: 10.1139/p80-159
16. Perdew J.P., Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Physical Review B, 1992, vol. 45, no. 23, pp. 13244–13249. doi: 10.1103/PhysRevB.45.13244
17. Stephens P.J., Devlin F.J., Chabalowski C.F., Frisch M.J. Ab Initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. Journal of Physical Chemistry, 1994, vol. 98, no. 45, pp. 11623–11627.
18. Van Lenthe E., Baerends E.J. Optimized slater-type basis sets for the elements 1–118. Journal of Computational Chemistry, 2003, vol. 24, no. 9, pp. 1142–1156. doi: 10.1002/jcc.10255
19. Fernandez R.J., Lopez R., Ramirez G., Ema I. Correspondence between GTO and STO molecular basis sets. Journal of Computational Chemistry, 2001, vol. 22, no. 14, pp. 1655–1665. doi: 10.1002/jcc.1121
20. Van Lenthe J.H., Faas S., Snijders J.G. Gradients in the ab initio scalar zeroth-order regular approximation (ZORA) approach. Chemical Physics Letters, 2000, vol. 328, no. 1–2, pp. 107–112.
21. Beutel V., Kramer H.-G., Bhale G.L., Kuhn M., Weyers K., Demtroder W. High resolution isotope selective laser spectroscopy of Ag2 molecules. Journal of Chemical Physics, 1993, vol. 98, no. 4, pp. 2699– 2708. doi: 10.1063/1.464151
22. Van Lenthe E., Ehlers, A.E., Baerends, E.J. Geometry optimizations in the zero order regular approximation for relativistic effects. Journal of Chemical Physics, 1999, vol. 110, no. 18, pp. 8943–8953. doi: 10.1063/1.478813


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика