doi: 10.17586/2226-1494-2015-15-4-632-639


ON THE SPECIFIC FEATURES OF SILICON CARBIDE HETEROPOLYTYPE EPITAXY

S. Y. Davydov, A. A. Lebedev, A. S. Usikov


Read the full article  ';
Article in Russian

For citation: Davydov S.Yu., Lebedev A.A., Usikov A.S. On the specific features of silicon carbide heteropolytype epitaxy. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol.15, no. 4, pp. 632–639.

Abstract
Specific features of silicon carbide layer formation with the structure (polytype) different from the SiC-substrate structure (polytype) are considered. Simple theoretical foundations of the nonstoichiometric character, impurities, C- and Si-faces effect on the heteropolytype epitaxy (HPE) of silicon carbide are proposed. By means of Harrison’s bond orbital model it is shown that the adsorption possibility for the C-face is much greater than for the Si-face. Within the scopes of the earlier proposed models (D-model and vacancy model) it is demonstrated that the presence of impurities changes characteristic lifetimes of the HPE process and the transition layer widths: impurities which enforce the interpolytype transition decrease corresponding life-time constants and the transition layer widths. For interpretation of the polytype stripes existence within the transition layer, the model of specific spinodal decomposition taking into account vacancy concentrations variations in both SiC sublattices is used.

Keywords: silicon carbide, heteropolytype epitaxy, transition layers, spinodal decomposition.

References
1. Lebedev A.A. Atomic structure and non-electronic properties of semiconductors influence of native defects on polytypism in SiC. Semiconductors, 1999, vol. 33, no. 7, pp. 707–709.
2. Lebedev A.A. Heterojunctions and superlattices based on silicon carbide. Semiconductor Science and Technology, 2005, vol. 21, no. 6, pp. R17–R34. doi: 10.1088/0268-1242/21/6/R01
3. Gusev A.I. Nonstoichiometry and superstructures. Physics-Uspekhi, 2014, vol. 57, pp. 839–876. doi: 10.3367/UFNe.0184.201409a.0905
4. Lebedev A.A., Zamorianskaya M.V., Davydov S.Y., Kirilenko D.A., Lebedev S.P., Sorokin L.M., Shustov D.B., Scheglov M.P. Investigation of the transition layer in 3C-SiC/6H-SiC heterostructures. Semiconductors, 2013, vol. 47, no. 11, pp. 1539–1543.
5. Harrison W.A. Electronic Structure and the Properties of Solids: the Physics of the Chemical Bond. San Francisco, W.H. Freeman and Company, 1989, 307 p.
6. Fizicheskie Velichiny. Spravochnik [Physical Quantities. Handbook] / Eds. I.S. Grigor'ev, E.Z. Meilikhov. Moscow, Energoatomizdat Publ., 1991, 1232 p.
7. Ramsier R.D., Yates, Jr. J.T. Electron-stimulated desorption: principles and applications. Surface Sciences Reports, 1991, vol. 12, no. 6–8, pp. 246–378. doi: 10.1016/0167-5729(91)90013-N
8. Davydov S.Y., Lebedev A.A. On the possibility of spinodal decomposition in the transition layer of a heterostructure based on silicon-carbide polytypes. Semiconductors, 2014, vol. 48, no. 6, pp. 701–704. doi: 10.1134/S1063782614060098
9. Lebedev A.A., Davydov S.Yu. A vacancy model of the heteropolytype epitaxy of SiC. Semiconductors, 2005, vol. 39, no. 3, pp. 277–280. doi: 10.1134/1.1882785
10. Davydov S.Yu., Lebedev A.A. Vacancy kinetics in heteropolytype epitaxy of SiC. Semiconductors, 2007, vol. 41, no. 6, pp. 621–624. doi: 10.1134/S1063782607060012
11. Khachaturyan A.G. Teoriya Fazovykh Prevrashchenii i Struktura Tverdykh Rastvorov [Theory of Phase Transitions and Structure of Solid Solutions]. Moscow, Nauka Publ., 1974, 384 p.
12. Skripov V.P., Skripov A.V. Spinodal'nyi raspad (Fazovyi perekhod s uchastiem neustoichivykh sostoyanii) [Spinodal decomposition (phase transition involving unstable states)]. Physics-Uspekhi, 1979, vol. 128, no. 6, pp. 193–231.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика