doi: 10.17586/2226-1494-2016-16-5-856-863


CRYOGENIC SYSTEM FOR PRECISE CALIBRATION OF TEMPERATURE SENSORS

A. N. Solovyev, I. N. Solovyev, K. A. Ivshin, O. B. Bezymyannykh, A. A. Vasiliev, M. E. Vznuzdaev, S. S. Kiselev, L. M. Kotchenda, P. V. Kravchenko, O. L. Kochenda, P. A. Kravtsov, V. A. Trofimov, V. D. Fotyev


Read the full article  ';
Article in Russian

For citation: Soloviev A.N., Soloviev I.N., Ivshin K.A., Bezymyannykh O.B., Vasilyev A.A., Vznuzdaev M.E., Kiselev S.S., Kochenda L.M., Kravchenko P.V., Kochenda O.L., Kravtsov P.A., Trofimov V.A., Fotiev V.D. Cryogenic system for precise calibration of temperature sensors. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 5, pp. 856–863. doi: 10.17586/2226-1494-2016-16-5-856-863

Abstract

A calibration technique for cryogenic temperature sensors is proposed and implemented. The experimental setup is based on the helium cryogenerator, providing calibration of the temperature sensors of various types in wide temperature range, including cryogenic band (25-100K). A condensation thermometer with hydrogen, neon, argon and xenon as working gases is used as a reference sensor. The experimental setup was successfully used for precise (0.1K precision) calibration of platinum resistive temperature detectors (Pt-100) for international nuclear physics experiments MuSun and PolFusion. The setup can also be used for calibration of temperature sensors of the other types.


Keywords: resistive temperature detectors, cryogenic calibration of temperature sensors

Acknowledgements. This work was supported by the Russian Science Foundation (Project 14-12-01056). The authors express their thanks to A. Nikanorov for his help in experimental setup production.

References

1. Petitjean C. Muon capture experiments in hydrogen and deuterium. Nuclear Instruments and Methods in Physics Research, Section A, 2009, vol. 600, no. 1, pp. 338–341. doi: 10.1016/j.nima.2008.11.140
2. Engels R., Grigoryev K., Kochenda L. et al. Polarized fusion. Physics of Particles and Nuclei, 2014, vol. 45, no. 1, pp. 341–343. doi: 10.1134/S1063779614010250
3. Gray F. Muon capture on the proton and deuteron. The European Physical Journal Special Topics, 2008, vol. 162, no. 1, pp. 231–237. doi: 10.1140/epjst/e2008-00798-3
4. Ganzha V.A., Kravtsov P.A., Maev O.E. et al. A circulating hydrogen ultra-high purification system for the MuCap experiment. Nuclear Instruments and Methods in Physics Research, Section A, 2007, vol. 578, no. 3, pp. 485–497. doi: 10.1016/j.nima.2007.06.010
5. Alekseev I., Arkhipov E., Bondarenko S. et al. Cryogenic distillation facility for isotopic purification of protium and deuterium. Review of Scientific Instruments, 2015, vol. 86, no. 12, art. 125102. doi: 10.1063/1.4936413
6. Ryan R.A., Wauters F., Gray F.E. et al. Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment. Journal of Instrumentation, 2014, vol. 9, no. 7, art. P07029.
7. Terekhin S.N., Vasiliev A.A., Vznuzdaev M.E. et. al. Instrumentation for experimental study of cross section of dd-nuclear fusion reaction with polarized components in PolFusion project. Journal of Instrument Engineering, 2011, vol. 54, no. 7, pp. 62–67.
8. Bojkovski J., Drnovsek J., Pusnik I., Tasic T. Automation of a precision temperature calibration laboratory. IEEE Transactions on Instrumentation and Measurement, 2000, vol. 49, no. 3, pp. 596–601. doi: 10.1109/19.850401
9. Kravtsov P., Trofimov V., Martyushov A. High-Precision Temperature Measuring Instrument. Preprint PNPI-2722. Gatchina, 2007, 24 p.
10. Kravtsov P., Trofimov V. Multi-Channel Measuring Instrument for Slow Control Systems. Preprint PNPI-2723. Gatchina, 2007, 20 p.
11. Tavener J. Common errors in industrial temperature measurement. Isotech Journal of Thermometry, 1992, vol. 3, no. 1, pp. 19–28.
12. Gerashchenko O.A., Gordov A.N., Eremina A.K. et. al. Temperature Measurements. Kiev, Naukova Dumka, 1989, 704 p.
13. Thomson G.W.M. The Antoine equation for vapor-pressure data. Chemical Review, 1946, vol. 38, no. 1, pp. 1–39.
14. Antoine C.R. Tensions des vapeurs; nouvelle relation entre les tensions et les temperatures. Comptes Rendus des Séances de l'Académie des Science, 1888, vol. 107, pp. 681–684.
15. McCarty R.D., Hord J., Roder H.M. Selected Properties of Hydrogen (Engineering Design Data). NBS Monograph, 1981, vol. 168.
16. Katti R., Jacobsen R.T., Stewart R.B., Jahangiri M. Thermodynamic properties for neon for temperatures from the triple point to 700K at pressures to 700MPa. Advances in Cryogenic Engineering, 1986, vol. 31, pp. 1189–1197.
17. Stewart R., Jacobsen R. Thermodynamic properties of argon from the triple point to 1200K at pressures to 1000MPa. Journal of Physical and Chemical Reference Data, 1989, vol. 18, no. 2, pp. 639–798. doi: 10.1063/1.555829
 



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика