doi: 10.17586/2226-1494-2016-16-6-1031-1037


E. M. Sgibnev, N. V. Nikonorov, A. I. Ignatiev, D. S. Starodubov

Read the full article  ';
Article in Russian

For citation: Sgibnev Y.M., Nikonorov N.V., Ignatiev A.I., Starodubov D.S. Luminescent properties of silver clusters formed by ion exchange method in photo-thermo-refractive glass. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 6, pp. 1031–1037. doi: 10.17586/2226-1494-2016-16-6-1031-1037


Subject of Study.The paper deals with novel research of ion exchange duration influence on spectral-luminescent properties of silver clusters formed in photo-thermo-refractive glass. Method. Photo-thermo-refractive matrix glass based on Na2O–Al2O3–ZnO–SiO2–F (% mol.) system doped with 0,002% mol. of Sb2O3 was synthesized for further research. Silver ions were introduced with low temperature ion exchange method. The glass samples were immersed in the mixture of sodium and silver nitrates 5AgNO3/95NaNO3 (% mol.) at the temperature of 320 °C. Ion exchange duration varied from 5 minutes to 21 hours. Luminescent silver clusters were formed in surface layers of photo-thermo-refractive glass by subsequent heat treatment at the temperature of 450 °C. Main Results. Embedding of silver ions in photo-thermo-refractive glass with ion exchange method led to long-wavelength shift of the UV edge of strong absorption. Location of the UV edge of strong absorption and emission peak of silver clusters depends on ion exchange duration and shifts to the greater wavelengthswith increasing the ion exchange process time. Quantum yield of luminescence decreases significantly according to Stern-Volmer equation with the rising of ion exchange duration. Practical Relevance. Research results can be used for developing white LEDs and down-convertors of solar radiation.  

Keywords: silver clusters, ion exchange, photo-thermo-refractive glass, luminescence

Acknowledgements. Research was funded by the Russian Science Foundation (Agreement No.14-23-00136).


1. Roduner E. Size matters: why nanomaterials are different. Chemical Society Reviews, 2006, vol. 35, no. 7, pp. 583–592. doi: 10.1039/b502142c
2. Royon A., Bouhris K., Bechou L., Cardinal T., Canioni L., Deshayes Y. Durability study of a fluorescent optical memory in glass studied by luminescence spectroscopy. Microelectronics Reliability, 2013, vol. 53, no. 9-11, pp. 1514–1518. doi: 10.1016/j.microrel.2013.07.110
3. Diez I., Kanyuk M.I., Demchenko A.P., Walther A., Jiang H., Ikkala O., Ras R.H.A. Blue, green and red emissive silver nanoclusters formed in organic solvents. Nanoscale, 2012, vol. 4, no. 15, pp. 4434–4437. doi: 10.1039/c2nr30642e
4. De Cremer G., Coutino-Gonzalez E., Roeffaers M.B.J., Moens B., Ollevier J., Van Der Auweraer M., Schoonheydt R., Jacobs P.A., De Schryver F.C., Hofkens J., De Vos D.E., Sels B.F., Vosch T. Characterization of fluorescence in heat-treated silver-exchanged zeolites. Journal of American Chemical Society, 2009, vol. 131, no. 8, pp. 3049–3056. doi: 10.1021/ja810071s
5. Fedrigo S., Harbich W., Buttet J. Optical response of Ag2, Ag3, Au2, and Au3 in argon matrices. The Journal of Chemical Physics, 1993, vol. 99, no. 8, pp. 5712–5717.
6. Rabin I., Schulze W., Ertl G., Felix C., Sieber C., Harbich W., Buttet J. Absorption and fluorescence spectra of Ar-matrix-isolated Ag3 clusters. Chemical Physics Letters, 2000, vol. 320, no. 1-2, pp. 59–64.
7. Felix C., Sieber C., Harbich W., Buttet J., Rabin I., Schulze W., Ertl G. Fluorescence and excitation spectra of Ag4 in an argon matrix. Chemical Physics Letters, 1999, vol. 313, no. 1-2, pp. 105–109.
8. Kuznetsov A.S., Tikhomirov V.K., Shestakov M.V., Moshchalkov V.V. Ag nanocluster functionalized glasses for efficient photonic conversion in light sources, solar cells and flexible screen monitors. Nanoscale, 2013, vol. 5, no. 21, pp. 10065–10075. doi: 10.1039/c3nr02798h
9. Cattaruzza E., Caselli V. M., Mardegan M., Gonella F., Bottaro G., Quaranta A., Valotto G., Enrichi F. Ag+↔ Na+ ion exchanged silicate glasses for solar cells covering: down-shifting properties. Ceramics International, 2015, vol. 41, no. 5, pp. 7221–7226. doi: 10.1016/j.ceramint.2015.02.060
10. Sgibnev Y.M., Nikonorov N.V., Ignatiev A.I. Luminescence of silver clusters in ion-exchanged cerium-doped photo-thermo-refractive glasses. Journal of Luminescence, 2016, vol. 176, pp. 292–297. doi: 10.1016/j.jlumin.2016.04.001
11. Cattaruzza E., Mardegan M., Pregnolato T., Ungaretti G., Aquilanti G., Quaranta A., Battaglin G., Trave E. Ion exchange doping of solar cell coverglass for sunlight down-shifting. Solar Energy Materials and Solar Cells, 2014, vol. 130, pp. 272–280. doi: 10.1016/j.solmat.2014.07.028
12. Klyukin D.A., Sidorov A.I., Ignatiev A.I., Nikonorov N.V. Luminescence quenching and recovering in photo-thermo-refractive silver-ion doped glasses. Optical Materials, 2014, vol. 38, pp. 233–237. doi: 10.1016/j.optmat.2014.10.037
13. Nikonorov N.V., Aseev V.A., Dubrovin V.D., Ignatiev A.I., Ivanov S.A., Sgibnev Y.M., Sidorov A.I. Design and fabrication of optical devices based on new polyfunctional photo-thermo-refractive glasses. Proc. 4th Int. Conf. on Photonics, Optics and Laser Technology PHOTOPTICS 2016. Rome, Italy, 2016, pp. 20–27.
14. Nikonorov N.V., Panysheva E.I., Tunimanova I.V., Chukharev A.V. Influence of glass composition on the refractive index change upon photothermoinduced crystallization. Glass Physics and Chemistry, 2001, vol. 27, no. 3, pp. 241–249. doi: 10.1023/A:1011392301107
15. Ivanov S.A., Ignat'ev A.I., Nikonorov N.V., Aseev V.A. Holographic characteristics of a modified photothermorefractive glass. Journal of Optical Technology, 2014, vol. 81, no. 6, pp. 356–360. doi: 10.1364/JOT.81.000356
16. Andrusyak O., Smirnov V., Venus G., Rotar V., Glebov L. Spectral combining and coherent coupling of lasers by volume Bragg gratings. IEEE Journal of Selected Topics in Quantum Electronics, 2009, vol. 15, no. 2, pp. 344–353. doi: 10.1109/JSTQE.2009.2012438
17. Aseev V.A., Nikonorov N.V. Spectroluminescence properties of photothermorefractive nanoglass-ceramics doped with ytterbium and erbium ions. Journal of Optical Technology, 2008, vol. 75, no. 10, pp. 676–681.
18. Sato Y., Taira T., Smirnov V., Glebova L., Glebov L. Continuous-wave diode-pumped laser action of Nd 3+-doped photo-thermo-refractive glass. Optics Letters, 2011, vol. 36, no. 12, pp. 2257–2259. doi: 10.1364/OL.36.002257
19. Ignat'ev A.I., Nikonorov N.V., Tsekhomskii V.A., Tsygankova E.V. Features of the photosensitivity of photothermorefractive laser nanoglass-ceramics doped with rare-earth ions. Journal of Optical Technology, 2009, vol. 76, no. 1, pp. 43–47.
20. Nikonorov N.V., Savin A.A., Tsekhomskii V.A. Influence of ionizing radiation on the spectral properties of photo-thermo-refractive glass containing silver nanoparticles. Glass Physics and Chemistry, 2013, vol. 39, no. 3, pp. 261–265. doi: 10.1134/S1087659613030152
21. Sgibnev Y., Nikonorov N., Ignatiev A., Vasilyev V., Sorokina M. Photostructurable photo-thermo-refractive glass. Optics Express, 2016, vol. 24, no. 5, pp. 4563–4572. doi: 10.1364/OE.24.004563
22. Sgibnev Y.M., Nikonorov N.V., Vasilev V.N., Ignatiev A.I. Optical gradient waveguides in photo-thermo-refractive glass formed by ion exchange method. Journal of Lightwave Technology, 2015, vol. 33, no. 17, pp. 3730–3735. doi: 10.1109/JLT.2015.2456239
23. Morain M., Barton J.L. Proc. Symp. sur la Surface du Verre et ses Traitements Modernes. Luxemburg, 1967, pp. 207.
24. Tervonen A., West B.R., Honkanen S. Ion-exchanged glass waveguide technology: a review. Optical Engineering, 2011, vol. 50, no. 7, art. 071107. doi: 10.1117/1.3559213
25. Borsella E., Gonella F., Mazzoldi P., Quaranta A., Battaglin G., Polloni R. Spectroscopic investigation of silver in soda-lime glass. Chemical Physics Letters, 1998, vol. 284, no. 5, pp. 429–434.
26. Simo A., Polte J., Pfander N., Vainio U., Emmerling F., Rademann K. Formation mechanism of silver nanoparticles stabilized in glassy matrices. Journal of the American Chemical Society, 2012, vol. 134, no. 45, pp. 18824–18833. doi: 10.1021/ja309034n
27. Sgibnev E.M., Ignatiev A.I., Nikonorov N.V., Efimov A.M., Postnikov E.S. Effects of silver ion exchange and subsequent treatments on the UV–VIS spectra of silicate glasses. I. Undoped, CeO2-doped, and (CeO2 + Sb2O3)-codoped photo-thermo-refractive matrix glasses. Journal of Non-Crystalline Solids, 2013, vol. 378, pp. 213–226. doi: 10.1016/j.jnoncrysol.2013.07.010
28. Keizer J. Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots. Journal of the American Chemical Society, 1983, vol. 105, no. 6, pp. 1494–1498.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.