doi: 10.17586/2226-1494-2016-16-6-1103-1110


FUNCTIONAL SURFACE MICROGEOMETRY PROVIDING THE DESIRED PERFORMANCE OF AN AIRCRAFT VIBRATION SENSOR

Y. S. Andreev, N. A. Demkovich, R. M. Isaev, A. A. Tselishchev, S. D. Vasilkov


Read the full article  ';
Article in Russian

For citation: Andreev Yu.S., Demkovich N.A., Isaev R.M., Tselischev A.A., Vasilkov S.D. Functional surface microgeometry providing the desired performance of an aircraft vibration sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 6, pp. 1103–1110. doi: 10.17586/2226-1494-2016-16-6-1103-1110

Abstract

Subject of Research. The paper deals with the methods of efficiency improving for piezoelectric vibration sensors used in aircraft industry to control the level of vibration of gas turbine engines. The study looks into the matter of surface microgeometry effect of the vibro sensor part on its transverse sensitivity ratio. Measures are proposed to improve the sensor performance without cost supplement by optimization of the functional surface microgeometry. Method. A method for determination of the best possible surface microgeometry within the specific production conditions is shown. Also, a method for microgeometry estimation of the functional surfaces using graphical criteria is used. Taguchi method is used for design of experiment for functional surfaces machining. The use of this method reduces significantly the number of experiments without validity loss. Main Results. The relationship between technological factors of manufacturing the vibration sensor parts and its sensitivity has been found out. The optimal surface machining methods and process conditions for parts ensuring the best possible sensitivity have been determined. Practical Relevance. Research results can be used by instrument-making companies to improve the process of piezoelectric vibration sensor design and manufacturing.


Keywords: surface microgeometry, mechanical processing, piezoelectric vibration sensor, Taguchi method, graphical criteria, surface functional properties

Acknowledgements. This work was supported by the RFBR (grant No.16-38-00847). The work has earned the award at the V ITMO University Congress of Young Scientists (2016): “Best Scientific and Research Paper Presented by a PhD Student”.

References

1. Rothemann L., Schretter H. Active vibration damping of the alpine ski. Procedia Engineering, 2010, vol. 2, no. 2, pp. 2895–2900. doi: 10.1016/j.proeng.2010.04.084
2. Sharma A., Olszewski O.Z., Torres J., Mathewson A., Houlihan R. Fabrication, simulation and characterisation of MEMS piezoelectric vibration energy harvester for low frequency. Procedia Engineering, 2015, vol. 120, pp. 645–650. doi: 10.1016/j.proeng.2015.08.695
3. Las V., Zemcik R., Kroupa T., Bartosek J. Reconstruction of impact force on curved panel using piezoelectric sensors. Procedia Engineering, 2012, vol. 42, pp. 367–374. doi: 10.1016/j.proeng.2012.09.527
4. Voglhuber-Brunnmaier T., Jakoby B. Modeling of a piezoelectric fluid sensor excited by lateral fields using a spectral domain approach. Procedia Engineering, 2010, vol. 5, pp. 82–86. doi: 10.1016/j.proeng.2010.09.053
5. Bau M., Ferrari M., Tonoli E., Ferrari V. Sensors and energy harvesters based on piezoelectric thick films. Procedia Engineering, 2011, vol. 25, pp. 737–744. doi: 10.1016/j.proeng.2011.12.182
6. Olszewski O.Z., Houlihan R., O’Keeffe R., O’Neill M., Waldron F., Mathewson A., Jackson N. A MEMS silicon-based piezoelectric AC current sensor. Procedia Engineering, 2014, vol. 87, pp. 1457–1460. doi: 10.1016/j.proeng.2014.11.724
7. Hazan A., Verleysen M., Cottrell1 M., Lacaille J. Trajectory clustering for vibration detection in aircraft engines. Lecture Notes in Computer Science, 2010, vol. 6171, pp. 362–375. doi: 10.1007/978-3-642-14400-4_28
8. Kiselev Yu.V., Kiselev D.Yu., Tits S.N. Vibration Diagnostics of Systems and Structures in Aeronautical Engineering. Samara, SSAU Publ., 2012, 207 p. (In Russian)
9. Aviatsionnye Pribory i Izmeritel'no-Vychislitel'nye Kompleksy [Aviation Devices and Measuring-Computing Systems]. Ufa, USATU Publ., 2006, 572 p.
10. Bogush M.V. Analiz i Sintez P'ezoelektricheskikh Datchikov dlya Vikhrevykh Raskhodomerov na Osnove Prostranstvennykh Elektrotermouprugikh Modelei. Dis. Dok. Tekh. Nauk [Analysis and Synthesis of Piezoelectric Sensors for Vortex Flowmeters based on the Spatial Electric Thermoelastic Models. Dis. Dr. Eng. Sci.]. Rostov-on-Don, 2009, 266 p.
11. Simchuk A.A. Razrabotka P'ezoelektricheskikh Datchikov Dinamicheskogo Davleniya s Uluchshennymi Metrologicheskimi Kharakteristikami i Rasshirennoi Oblast'yu Primeneniya: Dis. Kand. Tekh. Nauk [Development of Piezoelectric Dynamic Pressure Sensors with Improved Metrological Characteristics and an Expanded Area of Application. Dis. Eng. Sci.]. Moscow, 2011, 109 p.
12. Vusker V.Yu. Povyshenie Chuvstvitel'nosti Elementov Datchikov Vibratsii i Bystroperemennogo Davleniya na Osnove Sovershenstvovaniya Konstruktsii i P'ezotekhnologii: Dis. Kand. Tekh. Nauk [Increasing the Sensitivity of Elements of Vibration and Rapidly Pressure Sensors based on Perfection of Designs and Piezo Techniques. Dis. Eng. Sci.]. Moscow, 2009, 141 p.
13. Valetov V.A. Problems of optimization of workpiece surface microgeometry to ensure specific functional properties. Journal of Instrument Engineering, 2015, vol. 58, no. 4, pp. 250–267.
14. Filimonova E.A. Development of Methodology and Software for Automated Control of Instruments Surface Microgeometry using Graphical Criteria and their Application in Technological Research. Eng. Sci. Dis. Thesis. St. Petersburg, 2014, 24 p. (In Russian)
15. Walter P.L. The history of the accelerometer 1920s-1996 – prologue and epilogue. Sound and Vibration, 2007, vol. 41, no. 1, pp. 84–92.
16. Bogush M.V. Piezoelectric Instrument Making. V. 3. Piezoelectric Sensors for Extreme Conditions. Rostov-on-Don, SKNTs VSh, 2006, 346 p.
17. Indexable Inserts. Available at: www.arnoru.ru/upload/media/Turning/INDEXABLE%20INSERTS.pdf (accessed 04.05.2016).
18. Wu Y., Wu A., Taguchi G. Taguchi Methods for Robust Design. ASME INTL, 2000, 336 p.
19. Jagtap K., Pawade R. Experimental investigation on the influence of cutting parameters on surface quality in SPDT of PMMA. International Journal of Advanced Design and Manufacturing Technology, 2014, vol. 7, no. 2, pp. 53–58.
 



Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика