doi: 10.17586/2226-1494-2016-16-6-1133-1136


I. Y. Denisyuk, N. V. Vasilyeva, M. I. Fokina, J. E. Burunkova, M. V. Uspenskaya, N. A. Zulina, T. S. Bogomolova, I. V. Vybornova

Read the full article  ';
Article in Russian

For citation: Denisyuk I.Yu., Vasilyeva N.V., Fokina M.I., Burunkova Yu.E., Uspenskaya M.V., Zulina N.A., Bogomolova T.S., Vybornova I.V. Antifungal activity of ZnO, SiO2, Au and Ag acrylic nanocomposites. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 6, pp. 1133–1136. doi: 10.17586/2226-1494-2016-16-6-1133-1136


The paper describes our results on antifungal effect of nanocomposite material. The nanocomposite is based on acrylates and functional nanoparticles composition. The study of material activity was carried out by the agar diffusion method. Candida albicans (C. albicans) strain of fungi was used as a test object. The antifungal effect of polymer matrix is shown. Zinc oxide nanoparticles increase the antifungal effect. 

Keywords: nanocomposite, bio polymer, antifungal effect, nanoparticles, acrylate


1. Russmueller G., Liska R., Stampfl J. et. al. 3D printable biophotopolymers for in vivo bone regeneration. Materials, 2015, vol. 8, no. 6, pp. 3685–3700. doi: 10.3390/ma8063685
2. Martinez-Gutierrez F., Martinez A.E., Crus Pena D.C. et. al. The antimicrobial sensitivity of streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomedicine: Nanotechnology, Biology, and Medicine, 2008, vol. 4, no. 3, pp. 237–240. doi: 10.1016/j.nano.2008.04.005
3. Slane J., Vivanco J., Rose W., Ploeg H.-L., Squire M. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Materials Science and Engineering, 2015, vol. 48, pp. 188–196. doi: 10.1016/j.msec.2014.11.068
4. Brett D.W. A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy Wound Management, 2006, vol. 52, no. 1, pp. 34–41.
5. Elsome A.M., Hamilton-Miller J.M., Brumfitt W., Noble W.C. Antimicrobial activities in vitro and in vivo of transition element complexes containing gold (I) and osmium (VI). Journal of Antimicrobial Chemotherapy, 1996, vol. 37, no. 5, pp. 911–919. doi: 10.1093/jac/37.5.911
6. Burunkova J., Csarnovics I., Denisyuk I., Daroczi L., Kokenyesi S. Enhancement of laser recording in gold/amorphous chalcogenide and gold/acrylate nanocomposite layers. Journal of Non-Crystalline Solids, 2014, vol. 402, pp. 200–203. doi: 10.1016/j.jnoncrysol.2014.03.019
7. Burunkova J.A., Denisyuk I.Y., Semina S.A. Self-organization of ZnO nanoparticles on UV-curable acrylate nanocomposites. Journal of Nanotechnology, 2011, art. 951036. doi: 10.1155/2011/951036
8. Meulenkamp E.A. Size dependence of the dissolution of ZnO nanoparticles. Journal of Physical Chemistry B, 1998, vol. 102, no. 40, pp. 7764–7769.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.