DOI: 10.17586/2226-1494-2017-17-2-215-223


INTERACTION OF FEMTOSECOND LASER RADIATION WITH SKIN: MATHEMATICAL MODEL

P. Y. Rogov, Chau-Jern Cheng, S. S. Nalegaev, V. A. Skobnikov, V. G. Bespalov


Read the full article 
Article in Russian

For citation: Rogov P.Yu., Cheng C.J., Nalegaev S.S., Skobnikov V.A., Bespalov V.G. Interaction of femtosecond laser radiation with skin: mathematical model. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 2, pp. 215–223. (in Russian). doi: 10.17586/2226-1494-2017-17-2-215-223

Abstract

The features of human skin response to the impact of femtosecond laser radiation were researched. The Monte–Carlo method was used for estimation of the radiation penetration depth into the skin cover. We used prevalent wavelength equal to 800 nm (for Ti: sapphire laser femtosecond systems). A mathematical model of heat transfer process was introduced based on the analytical solution of the system of equations describing the dynamics of the electron and phonon subsystems. An experiment was carried out to determine the threshold energy of biological tissue injury (chicken skin was used as a test object). The value of electronic subsystem relaxation time was determined from the experiment and is in keeping with literature data. The results of this work can be used to assess the maximum permissible exposure of laser radiation of different lengths that cause the damage of biological tissues, as well as for the formation of safe operation standards for femtosecond laser systems


Keywords: femtosecond radiation, biological tissues, Monte–Carlo method, two–temperature model

Acknowledgements. The authors acknowledge financial support from the grant of the Russian Foundation for Basic Research (agreement No 16–52–5204916 dated 29.01.2016)

References
 1.        Akhmanov S.A., Vysloukh V.A., Chirkin A.S. Optics of Femtosecond Laser Pulses. Moscow, Nauka Publ., 1988, 312 p. (In Russian)
2.        Femtosecond Laser Pulses: Principles and Experiments. Ed. C. Rulliere. 2nd ed. Springer, 2005, 428 p.
3.        Frederickson K.S. Precise ablation of skin with reduced collateral damage using the femtosecond-pulsed, terawatt titanium-sapphire laser. Archives of Dermatology, 1993, vol. 129, no. 8, pp. 989–993. doi: 10.1001/archderm.129.8.989 
4.        Friedman N.J. et al. Femtosecond laser capsulotomy. Journal of Cataract & Refractive Surgery, 2011, vol. 37, no. 7, pp. 1189–1198. doi: 10.1016/j.jcrs.2011.04.022
5.        Rogov P.Yu., Knyazev M.A., Bespalov V.G. Research of linear and nonlinear processes at femtosecond laser radiation propagation in the medium simulating the human eye vitreous. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 5, pp. 782–788. doi: 10.17586/2226-1494-2015-15-5-782-788 (In Russian)
6.        Patterson G.H., Piston D.W. Photobleaching in two-photon excitation microscopy. Biophysical Journal, 2000, vol. 78, no. 4, pp. 2159–2162. doi: 10.1016/s0006-3495(00)76762-2 
7.        Campagnola P.J. et al. High–resolution nonlinear optical imaging of live cells by second harmonic generation. Biophysical Journal, 1999, vol. 77, no. 6, pp. 3341–3349. doi: 10.1016/s0006-3495(99)77165-1 
8.        Puida M., Ivanauskas F. Liet. Matem. Rink, 2005, vol. 45, pp. 504.
9.        Barsi C., Fleischer W.J. Increased field of view via nonlinear digital holography. Proc. Conf. on Lasers and Electro-Optics. San Jose, 2010. doi: 10.1364/CLEO.2010.CMCC4
10.     Nalegaev S.S., Petrov N.V. Numerical circulation of wave front expansion dynamics considering spatial effect of light self-action.Russian Journal of Physical Chemistry B, 2015, no. 8, pp. 52–54.
11.     Nalegaev S.S., Petrov N.V., Bespalov V.G. Numerical reconstruction of wave field spatial distributions at the output and input planes of nonlinear medium with use of digital holography. Journal of Physics: Conference Series, 2014, vol. 536, no. 1, p. 012025. doi: 10.1088/1742-6596/536/1/012025
12.     Nalegaev S.S., Petrov N.V., Bespalov V.G. Computational simulation of the light propagation process through nonlinear media. Fringe 2014, pp. 321–324. doi: 10.1007/978-3-642-36359-7_56 
13.     Nalegaev S.S., Petrov N.V., Bespalov V.G. Special features of iteration methods for phase problem in optics. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 6, pp. 30–35. (In Russian)
14.     Nalegaev S.S., Putilin S.E., Bespalov V.G. Particularities of femtosecond spectral supercontinuum generation in anisotropic crystal media with quadratic nonlinearity. Proc. SPIE, 2013, vol. 8699, p. 869914. doi: 10.1117/12.2017343
15.     Nalegaev S.S., Putilin S.E., Bespalov V.G. Particularities of femtosecond spectral supercontinuum generation in crystal media with χ(2)-nonlinearity. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 5, pp. 29–32.
16.     Schlie S., Fadeeva E., Koch J., Ngezahayo A., Chichkov B.N. Femtosecond laser fabricated spike structures for selective control of cellular behavior. Journal of Biomaterials Applications, 2010, vol. 25, no. 3, pp. 217–233. doi: 10.1177/0885328209345553
17.     König K., So P.T.C., Mantulin W.W., Gratton E. Cellular response to near–infrared femtosecond laser pulses in two-photon microscopes. Optics Letters, 1997, vol. 22, no. 2, pp. 135–136. doi: 10.1364/ol.22.000135
18.     Agate B. et al. Femtosecond optical tweezers for in-situ control of two-photon. Optics Express, 2004, vol. 12, no. 13, pp. 3011–3017. doi: 10.1364/opex.12.003011
19.     Beresna M. et al. Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Applied Physics Letters, 2011, vol. 98, no. 20, pp. 201101. doi: 10.1063/1.3590716
20.     Michael S. et. al. Tissue engineered skin substitutes created by laser-assisted bioprinting form skin-like structures in the dorsal skin fold chamber in mice. PloS One, 2013, vol. 8, no. 3, art. e57741. doi: 10.1371/journal.pone.0057741
21.     Murphy S.V., Atala A. 3D bioprinting of tissues and organs. Nature Biotechnology, 2014, vol. 32, no. 8, pp. 773–785. doi: 10.1038/nbt.2958 
22.     Dharmadhikari A.K. et al. DNA damage by OH radicals produced using intense, ultrashort, long wavelength laser pulses. Physical Review Letters, 2014, vol. 112, no. 13, pp. 138105. doi: 10.1103/physrevlett.112.138105 
23.     Petrov N.V., Kulya M.S., Tcypkin A.N., Bespalov V.G., Gorodetsky A. Application of terahertz pulse time-domain holography for phase imaging. IEEE Transactions on Terahertz Science and Technology, 2016, vol. 6, no. 3, pp. 464–472. doi: 10.1109/tthz.2016.2530938 
24.     Balbekin N.S., Kulya M.S., Rogov P.I., Petrov N.V. The modeling peculiarities of diffractive propagation of the broadband terahertz two-dimensional field. Physics Procedia, 2015, vol. 73, no. 49, pp. 49–53. doi: 10.1016/j.phpro.2015.09.120 
25.     Semenova V.A., Kulya M.S., Petrov N.V., Grachev Y.V., Tsypkin A.N., Putilin S.E., Bespalov V.G. Amplitude-phase imaging of pulsed broadband terahertz vortex beams generated by spiral phase plate. Proc. 41st Int. Conf. on Infrared, Millimeter, and Terahertz waves, IRMMW–THz, 2016. doi: 10.1109/irmmw-thz.2016.7758823
26.     Kulya M.S., Balbekin N.S., Gredyuhina I.V., Uspenskaya M.V., Nechiporenko A.P., Petrov N.V. Computational terahertz imaging with dispersive objects. Journal of Modern Optics, 2017. doi: 10.1080/09500340.2017.1285064
27.     GOST R 0723–94: Laser Safety. General Safety Requirements for the Development and Operation of Laser Devices. Moscow, Izdatel'stvo Standartov Publ., 1995, 34 p. (In Russian)
28.     Sriramoju V., Alfano R.R. In vivo studies of ultrafast near–infrared laser tissue bonding and wound healing. Journal of Biomedical Optics, 2015, vol. 20, no. 10, pp. 108001. doi: 10.1117/1.jbo.20.10.108001
29.     Wright C.H.G., Barrett S.F., Welch A.J. Laser–tissue interaction. In : Lasers in Medicine, D.R. Vij, K. Mahesh (eds.). Boston, Dordrecht, London, Kluwer Academic Publishers, 2002.
30.     Vogel A., Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chemical Reviews, 2003, vol. 103, pp. 577–644. doi: 10.1021/cr010379n 
31.     Tuchin V.V. Tissue optics and photonics: light-tissue interaction II. Journal of Biomedical Photonics & Engineering, 2016, vol. 2, no. 3, p. 030201. doi: 10.18287/jbpe16.02.030201 
32.     Müller G.J., Sliney D.H. (eds.) Dosimetry of Laser Radiation in Medicine and Biology. SPIE Press, Bellingham, 1989, 253 p.
33.     Sliney D.H., Trokel S.L. Medical Lasers and their Safe Use. NY, Academic Press, 1993.
34.     34 Welch A.J., Van Gemert M.J.C. (ed.). Optical-Thermal Response of Laser-Irradiated Tissue. NY, Springer, 2011. doi: 10.1007/978-90-481-8831-4
35.     Pushkareva A.E. Methods of Mathematical Modeling in Biotissue Optics. St. Petersburg, SPbSU ITMO Publ., 2008, 103 p. (In Russian)
36.     Meglinski I., Doronin A.V. Monte Carlo modeling for the needs of biophotonics and biomedical optics. Advanced Biophotonics: Tissue Optical Sectioning / Eds. V.V. Tuchin, R.K. Wang. Taylor & Francis, 2012.
37.     Jacques S. Monte Carlo modeling of light transport in tissue (steady state and time of flight). In: Optical–Thermal Response of Laser-Irradiated Tissue. Springer, 2011, pp. 109–144. doi: 10.1007/978-90-481-8831-4_5
38.     Fedorov M.V. L. V. Keldysh’s “Ionization in the Field of a Strong Electromagnetic Wave” and modern physics of atomic interaction with a strong laser field. Journal of Experimental and Theoretical Physics, 2016, vol. 122, no. 3,pp. 449–455.
39.     Veiko V.P., Shakhno E.A., Yakovlev E.B. Effective time of thermal effect of ultrashort laser pulses on dielectrics. Quantum Electronics, 2014, vol. 44, no. 4, pp. 322–324.
40.     Lipp V.P., Ivanov D.S., Rethfeld B., Garcia M.E. On the interatomic interaction potential that describes bond weakening in classical molecular-dynamic modelling. Journal of Optical Technology, 2014, vol. 81, no. 5, pp. 254–255. doi: 10.1364/jot.81.000254
41.     Dyukin R.V., Martsinovskiǐ G.A., Shandybina G.D., Yakovlev E.B., Nikiforov I.D., Guk I.V. Dynamics of the permittivity of a semiconductor acted on by a femtosecond laser. Journal of Optical Technology, 2011, vol. 78, no. 8, pp. 558–562.
42.     Serebryakov V.A. et al. Medical Monte-Carlo modeling for the needs of biophotonics and biomedical optics. In Advanced Biophotonics: Tissue Optical Sectioning. Eds. V.V. Tuchin, R.K. Wang. Taylor & Francis, 2012.
43.     Fredriksson I., Larsson M., Stromberg T. Optical microcirculatory skin model: assessed by Monte Carlo simulations paired with in vivo laser Doppler flowmetry. Journal of Biomedical Optics, 2008, vol. 13, no. 1, art. 014015. doi: 10.1117/1.2854691
44.     Stampfli P., Bennemann K.H. Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma. Physical Review B, 1990, vol. 42, no. 11, pp. 7163–7173. doi: 10.1103/physrevb.42.7163 
45.     Kropman M.F., Bakker H.J. Dynamics of water molecules in aqueous solvation shells. Science, 2001, vol. 291, no. 5511, pp. 2118–2120. doi: 10.1126/science.1058190
46.     Kropman M.F., Nienhuys H.K., Bakker H.J. Real-time measurement of the orientational dynamics of aqueous solvation shells in bulk liquid water. Physical Review Letters, 2002, vol. 88, no. 7, pp. 077601. doi: 10.1103/physrevlett.88.077601


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика