A. A. Orlov, E. A. Yankovskaya, S. V. Zhukovsky, P. A. Belov

Read the full article  ';
Article in Russian


The paper deals with acquisition and analysis of permittivity and permeability for a finite sample made of multi-layered metal-dielectric nanostructure –plasmon multilayer referred to a class of electromagnetic metamaterials. Metamaterials are artificial structures, periodical as a rule, with characteristic unit cell sizes much smaller than the wavelength in vacuum, having unusual properties not met in nature. For example, metamaterials open the way to fabrication of optical materials with permeability substantially differing from unity - the task considered as unrealizable for a long time. The classical Nicolson-Ross-Weir method has been applied for extraction of material parameters describing an electromagnetic behavior of the plasmon multilayer from reflection and transmission coefficients. Strong resonance-type magnetic activity in the optical frequency domain is observed in the metamaterial under consideration. Magnetism appears due to strong spatial dispersion inherent to the plasmon multilayers. Position of the permeability resonance is located exactly in the epsilon-near-zero region. It is shown how the resonance can be repositioned by means of the filling factor changing. Observed magnetic activity reaches the steady state with multilayer thickness equal to a few dozens of layers. Plasmon multilayers are sug-gested as robust and effective optical materials with a strong magnetic response in the whole optical domain.

Keywords: metamaterials, plasmons, magnetism, multilayered structures


1. Rytov S.M. Elektromagnitnye svoistva melkosloistoi sredy [Electromagnetic properties of small-layered environment]. Journal of Experimental and Theoretical Physics, 1955, vol. 29, no. 5, pp. 605–616.
2. Brekhovskikh L. Waves in Layered Media. NY, Academic Press, 1960, 574 p.
3. Born M., Wolf E. Principles of Optics. 4th ed. Pergamon Press, 1970, 808 p. (Russ. ed.: Born M., Vol'f E. Osnovy optiki. Moscow, Nauka Publ., 1973, 721 p.)
4. Scalora M., Bloemer M.J., Manka A.S., Pethel S.D., Dowling J.P., Bowden C.M. Transparent, metallo-dielectric one dimensional photonic band gap structures. Journal of Applied Physics,1998, vol. 83, no.4, pp. 2377–2383.
5. de Ceglia D., Vincenti M.A., Cappeddu M.G., Centini M., Akozbek N., DꞌOrazio A., Haus J.W., Bloemer M.J., Scalora M. Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges. Phys. Rev. A, 2008, vol. 77, no. 3, pp. 033848-1–033848-12. doi:
6. Tomita S., Yokoyama T., Yanagi H., Wood B., Pendry J.B., Fujii M., Hayashi S. Resonant photon tunneling via surface plasmon polaritons through one-dimensional metal-dielectric metamaterials. Optics Express, 2008, vol. 16, no. 13, pp. 9942–9950.
7. Allen T.W., DeCorby R.G. Assessing the maximum transmittance of eriodic metal-dielectric multilayers. Journal of the Optical Society of America B, 2011, vol. 28, no. 10, pp. 2529–2536.
8. Feng S., Elson J.M., Overfelt P.L. Optical properties of multilayer metal-dielectric nanofilms with all-evanescent modes. Optics Express, 2005, vol. 13, no. 11, pp. 4113–4124.
9. Zhang J., Jiang H., Gralak B., Enoch S., Tayeb G., Lequime M. Towards-1 effective index with one-dimensional metal-dielectric metamaterial: a quantitative analysis of the role of absorption losses. Optics Express, 2007, vol. 15, no. 12, pp. 7720–7729.
10. Chebykin A.V., Orlov A.A., Vozianova A.V., Maslovski S.I., Kivshar Y.S., Belov P.A. Nonlocal effective medium model for multilayered metal-dielectric metamaterials. Phys. Rev. B, 2011, vol. 84, no. 11, pp. 115438-1–115438-11. doi: 10.1103/PhysRevB.84.115438
11. Chebykin A.V., Orlov A.A., Simovski C.R., Kivshar Y.S., Belov P.A. Nonlocal effective parameters of multilayered metal-dielectric metamaterials. Phys. Rev. B, 2012, vol. 86, no. 11, pp. 115420-1–115420-8. doi: 10.1103/PhysRevB.86.115420
12. Nicolson A.M., Ross G.F. Measurement of the Intrinsic Properties of Materials by Time-Domain Techniques. IEEE Transactions on Instrumentation and Measurement, 1970, vol. 19, no. 4, pp. 377–382.
13. Weir W.B. Automatic Measurement of Complex Dielectric Constant and Permeability at Microwave Frequencies. Proc. of IEEE, 1974, vol. 62, no. 1, pp. 33–36.
14. Simovski C.R. Material parameters of metamaterials (a Review). Optics and Spectroscopy, 2009, vol. 107, no. 5, pp. 726-753. doi: 10.1134/S0030400X09110101
15. Chen X., Grzegorczyk T.M., Wu B.I., Pacheco J., Jr, Kong J.A. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E, 2004, vol. 70, no. 1, pp. 016608-1–016608-7. doi: 10.1103/PhysRevE.70.016608
16. Orlov A.A., Voroshilov P.M., Belov P.A., Kivshar Y.S. Engineered optical nonlocality in nanostructured metamaterials. Phys. Rev. B, 2011, vol. 84, no. 4, pp. 045424-1–045424-24. doi: 10.1103/PhysRevB.84.045424
17. Elser J., Podolksiy V.A., Salakhutdinov I., Avrutsky I. Nonlocal effects in effective-medium response of nanolayered metamaterials. Applied Physics Letters, 2007, vol. 90, no. 19, pp. 191109-1–191109-3. doi: 10.1063/1.2737935
18. Pollard R.J., Murphy A., Hendren W.R., Evans P.R., Atkinson R., Wurtz G.A., Zayats A.V., Podolksiy V.A. Optical nonlocalities and additional waves in epsilon-near-zero metamaterial. Phys. Rev. Lett., 2009, vol. 102, no. 12, pp. 127405-1–127405-4. doi: 10.1103/PhysRevLett.102.127405
19. Kivshar Yu.S., Orlov A.A. Perestraivaemye i nelineinye metamaterialy [Reconfigurable and nonlinear metamaterials]. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 3 (79), pp. 1–10.
20. Jeyaram Y., Jha S.K., Agio M., Loffler J.F., Ekinci Y. Magnetic metamaterials in the blue range using aluminum nanostructures. Optics Letters, 2010, vol. 35, no. 10, pp. 1656–1658.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.