doi: 10.17586/2226-1494-2017-17-3-514-524


K. N. Volkov, P. V. Bulat, I. A. Volobuev, V. A. Pronin

Read the full article  ';
Article in Russian

For citation: Volkov K.N., Bulat P.V., Volobuev I.A., Pronin V.A. Heat transfer in a cavity with rotating disk in turbulent regime. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 3, pp. 514–524 (in Russian). doi: 10.17586/2226-1494-2017-17-3-514-524


Subject of Research.The paper considers turbulent flow and heat exchange in a closed axisymmetric cavity with a rotating disk, which is a model of two-way axial thrust bearing, as well as the other important elements of turbomachines, for example, blade ring labyrinth seals of axial compressor stage. Method. The flow and heat transfer characteristics are studied depending on the relative gap between the fixed housing and the rotating disc and the Reynolds number. Comparison of the local and integral flow characteristics obtained on the basis of various models of turbulence with the data of physical experiment is given. Main Results. The flow structure and heat transfer characteristics are studied depending on the relative gap between the fixed body and the rotating disc and the Reynolds number. Comparison of the local and integral characteristics of the flow with the data of the physical experiment shows that the best matching is given by the application of the k-ε model with Kato-Launder corrections for the turbulence production term and the corrections to the curvature of the streamlines, as well as the two-layer k-ε / k-1 turbulence model. The application of the Spalart-Allmares turbulence model and the Reynolds stress transfer model leads to significant errors in calculating the heat flux distribution over the stator surface. Practical Relevance. The considered problem is a model problem and it gives the possibility to make a conclusion about the applicability of various flow models and models of turbulence in such units of compressors and gas turbines as seals of the blade ring, axial and radial gas and liquid bearings, rotating heat exchangers.

Keywords: gas dynamics, numerical methods, turbulence models, turbomachines

Acknowledgements. This work was financially supported by the Ministry of Education and Science of the Russian Federation (agreement No 14.578.21.0203, unique identifier of applied scientific research RFMEFI57816X0203).

1.     Daily J.W., Nece R. Chamber dimension effects on induced flow and frictional resistance of enclosed rotating discs // ASME Journal of Basic Engineering. 1960. V. 82. P. 217–232.
2.     Owen J.M., Rogers R.H. Flow and Heat Transfer in Rotating-Disc Systems. V. 2. Rotating Cavities. Research Studies Press, Taunton, 1995. 295 p.
3.     Шлихтинг Г. Теория пограничного слоя. М.: Наука, 1974. 712 с.
4.     Harmand S., Watel B., Desmet B. Local convective heat exchanges from a rotor facing a stator // International Journal of Thermal Sciences. 2000. V. 39. N 3. P. 404–413.
5.     Djaoui M., Dyment A., Debuchy R. Heat transfer in a rotor–stator system with a radial inflow // European Journal of Mechanics. B/Fluids. 2001. V. 20. N 3. P. 371–398. doi: 10.1016/S0997-7546(01)01133-5
6.     Debuchy R., Dyment A., Muhe H., Micheau P. Radial inflow between a rotating and a stationary disc // European Journal of Mechanics. B/Fluids. 1998. V. 17. N6. P. 791–810.
7.     Beretta G.P., Malfa E. Flow and heat transfer in cavities between rotor and stator disks // International Journal of Heat and Mass Transfer. 2003. V. 46. N15. P. 2715–2726.doi: 10.1016/S0017-9310(03)00065-6
8.     Шевчук И.В. Турбулентный теплообмен вращающегося диска при постоянной температуре или плотности теплового потока на стенке // ТВТ. 2000. Т. 38. № 3. С. 521–523.
9.     Iacovides H., Toumpanakis P. Turbulence modeling of flow in axisymmetric rotor-stator systems // Proc. 5th Int. Symposium on Refined Flow Modelling and Turbulence Measurements. Paris, 1993. P. 383–390.
10.  Morse A.P. Numerical prediction of turbulent flow in rotating cavities // Journal of Turbomachinery. 1988. V. 110. N 2. P. 202–212.
11.  Yuan Z.X., Saniei N., Yan X.T. Turbulent heat transfer on the stationary disk in a rotor–stator system // International Journal of Heat and Mass Transfer. 2003. V. 46. N 12. P. 2307–2218. doi: 10.1016/S0017-9310(02)00525-2
12.  Elena L., Schiestel R. Turbulence modeling of rotating confined flows // International Journal of Heat Fluid Flow. 1996. V. 17. N 3. P. 283–289. doi: 10.1016/0142-727X(96)00032-X
13.  Launder B.E., Spalding D.B. The numerical computation of turbulent flows // Computational Methods in Applied Mechanics Engineering. 1974. V. 3. N 2. P. 269–289. doi: 10.1016/0045-7825(74)90029-2
14.  Kato M., Launder B.E. The modelling of turbulent flow around stationary and vibrating square cylinders // Proc. 9th Symposium on Turbulent Shear Flows. Kyoto, 1993. V. 9. P. 10.4.1–10.4.6.
15.  Leschziner M.A., Rodi W. Calculation of annular and twin parallel jets using various discretization schemes and turbulent-model variations // Journal of Fluid Engineering.1981. V. 103. N 2. P. 353–360. doi: 10.1115/1.3241745 
16.  Rodi W. Experience with two-layer models combining the  model with one-equation model near wall // Proc. 29th Aerospace Science Meeting. 1991. No. 91-0216. doi: 10.2514/6.1991-216
17.  Wolfshtein M. The velocity and temperature distribution of one-dimensional flow with turbulence augmentation and pressure gradient // International Journal of Heat and Mass Transfer. 1969. V. 12. N 3. P. 301–318.
18.  Wilcox D.C. A two-equation turbulence model for wall-bounded and free-shear flows // AIAA Paper. 1993. N 93-2905.
19.  Spalart P.R., Allmaras S.R. A one equation turbulence model for aerodynamic flows // AIAA Paper. 1992. N 92-0439. doi: 10.2514/6.1992-439 
20.  Dacles-Mariani J., Zilliac G.G., Chow J.S., Bradshaw P. Numerical/experimental study of a wingtip vortex in the near field // AIAA Journal. 1995. V. 33. N9. P. 1561–1568. doi: 10.2514/3.12826
21.  Deck S., Duveau P., d'Espiney P., Guillen P. Development and application of Spalart–Allmaras one-equation turbulence model to three-dimensional supersonic complex configurations // Aerospace Science and Technology. 2002. V. 6. N 3. P. 171–183. doi: 10.1016/S1270-9638(02)01148-3
22.  Jones W.P., Musonge P. Closure of the Reynolds stress and scalar flux equations // Physics of Fluids. 1988. V. 31. N 12. P. 3589–3604.doi: 10.1063/1.866876

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.