doi: 10.17586/2226-1494-2017-17-4-635-639


EFFECT OF FERRITE NANOCRYSTALS ON RAMAN SPECTRA OF POTASSIUM-ALUMINABORATE GLASS

A. N. Babkina, D. I. Sobolev, N. V. Nikonorov


Read the full article  ';
Article in Russian

For citation: Babkina A.N., Sobolev D.I., Nikonorov N.V. Effect of ferrite nanocrystals on raman spectra of potassium-aluminaborate glass. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 4, pp. 635–639 (in Russian). doi: 10.17586/2226-1494-2017-17-4-635-639

Abstract

Subject of Research. The paper presents research results of potassium-aluminaborate glass with ferrite nanocrystals. The formation process of the ferrite nanocrystals in potassium-aluminaborate glass host is studied. The spectral characteristics of Raman scattering are analyzed. Method.The glasses under study are synthesized by the method of batch melting in the crucible. Potassium-aluminaborate glass system (K2O-Al2O3-B2O3) and such dopants as 3 wt% Fe2O3 (composition 1), 3 wt% Fe2O3 and 2 wt% MnO (composition 2) are used. The glass synthesis temperature is 1300 °C. The ferrite crystal phase nucleation occurred during heat treatment at 560 °C for 3 hours. The Raman spectra are excited by radiation of a polarized helium-neon laser (λ=633 nm) with 50 Wt power and are recorded by a single pass Renishaw spectrometer. Stimulating pulses are focused onto the sample by Leica optical microscope. Main Results. It is shown that after glass isothermal treatment at the temperature equal to 560 °C for 3 hours the formation of nanocrystals of magnetite and manganese ferrite occurs. It is connected with the appearance in the Raman spectra of additional bands near 350, 680 cm-1 and 630 cm-1, which corresponds to the modes Eg, A1g of FeFe2O4 and A1g of MnFe2O4. Practical Relevance.The activated glasses under research could be applied as the sensitive media for the design of the optical isolators based on the Faraday effect and current sensors.


Keywords: Raman scattering, potassium-aluminaborate glass, magnetite, manganese ferrite, nanocrystal

References
1.     Shen Y. et al. Effect of temperature on characteristics of rare earth-doped magneto-optical glass in optical current transducer application. Optik, 2015, vol. 126, no. 23, pp. 3589–3593. doi: 10.1016/j.ijleo.2015.08.249
2.     Chen Q.Ma Q., Wang H., Chen Q. Structural and properties of heavy metal oxide Faraday glass for optical current transducer. Journal of Non-CrystallineSolids, 2015, vol. 429, pp. 13–19. doi: 10.1016/j.jnoncrysol.2015.08.031
3.     Chen Q. et al. Structural, optical and magnetic properties of Fe3O4 sputtered TeO2-PbO-B2O3 and PbO-Bi2O3-B2O3 glasses for sensing applications. Journal of Non-CrystallineSolids, 2015, vol. 408, pp. 43–50. doi: 10.1016/j.jnoncrysol.2014.10.011
4.     Starobor A.V., Zheleznov D.S., Palashov O.V., Savinkov V.I., Sigaev V.N. Borogermanate glasses for Faraday isolators at high average power. Optics Communication, 2016, vol. 358, pp. 176–179. doi: 10.1016/j.optcom.2015.09.047
5.     Chen Z., Yang L., Wang. X., Wang J., Hang Y. Fabrication and characterizations of a erbium doped terbium gallium garnet crystal for faraday rotators. Materials Letters, 2015, vol. 161, pp. 93–95. doi: 10.1016/j.matlet.2015.08.085
6.     Jinhao G.A.O., Hongwei G.U., Bing X.U. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Accounts of Chemical Research, 2009, vol. 42, no. 8, pp. 1097–1107. doi: 10.1021/ar9000026
7.     Allkemper T., Bremer C., Matuszewski L., Ebert W., Reimer P. Contrast-enhanced blood-pool MR angiography with optimized iron oxides: effect of size and dose on vascular contrast enhancement in rabbits. Radiology, 2002, vol. 223, no. 2, pp. 432–438.
8.     Rathenau G.W., Smit J., Stuyts A.L. Ferromagnetic properties of hexagonal iron-oxide compounds with and without a preferred orientation. Zeitschrift fur Physik, 1952, vol. 133, no. 1–2, pp. 250–260. doi: 10.1007/BF01948700
9.     Went J.J., Rathenau G.W., Gorter E.W., Van Oosterhout G.W. Hexagonal iron-oxide compounds as permanent-magnet materials. Physical Review, 1952, vol. 86, no. 3, pp. 424–425. doi: 10.1103/PhysRev.86.424.2
10.  Thota S., Kashyap S.C., Sharma S.K., Reddy V.R. Micro Raman, Mossbauer and magnetic studies of manganese substituted zinc ferrite nanoparticles: role of Mn. Journal of Physics and Chemistry of Solids, 2016, vol. 91, pp. 136–144. doi: 10.1016/j.jpcs.2015.12.013
11.  Sena N.C., Castro T.J., Garg V.K. et al. Gadolinium ferrite nanoparticles: synthesis and morphological, structural and magnetic properties. Ceramics International, 2016, vol. 43, no. 5, pp. 4042–4047. doi: 10.1016/j.ceramint.2016.11.155
12.  Sousa M.H., Tourinho F., Rubim J.C. Use of Raman micro-spectroscopy in the characterization of M(II) Fe2O4 ( M = Fe , Zn ) electric double layer ferrofluids. Journal of Raman Spectroscopy, 2000, vol. 31, no. 3, pp. 185–191.
13.  .de Faria D.L.A., Venâncio Silva S., de Oliveira M.T. Raman microspectroscopy of some iron oxides and oxyhydroxides. Journal of Raman Spectroscopy, 1997, vol. 28, no. 11, pp. 873–878.
14.  Wang Z., Lazor P., Saxena S.K., O'Neill H.St.C. High pressure Raman spectroscopy of ferrite MgFe2O4. Materials Research Bulletin, 2002, vol. 37, no. 9, pp. 1589–1602. doi: 10.1016/S0025-5408(02)00819-X
15.  Edelman I.S., Zarubina T.V., Stepanov S.A., Kim T.A. Magnetic properties of ferrite microparticles in borate glasses. Journal of Magnetism and Magnetic Materials, 1992, vol. 110, pp. 99–102. doi: 10.1016/0304-8853(92)90017-I
16.  Sobolev D.I., Nikonorov N.V., Shirshnev P.S., Nuryev R.K., Stepanov S.A., Panov D.Yu. Synthesis, structure and spectral properties of potassium-alumina-borate glass with nanocrystals of manganese ferrite. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 4, pp. 642–648. doi: 10.17586/2226-1494-2016-16-4-642-648
17.  Babkina A.N., Nikonorov N.V., Tsekhomskii V.A., Shirshnev P.S. The effect of temperature on the exciton absorption of copper chloride and copper bromide nanocrystals in potassium-aluminum-borate glass. Glass Physics and Chemistry, 2015, vol. 41, no. 1, pp. 81–88. doi: 10.1134/S1087659615010046
18.  Konijnendijk W.L., Stevels J.M. The structure of borate glasses studied by Raman scattering. Journal of Non-CrystallineSolids, 1975, vol. 18, no. 3, pp. 307–331. doi: 10.1016/0022-3093(75)90137-4
19.  Reddy S.S.K., Raju N., Reddy C.G. et al. Study of Mn doped multiferroic DyFeO3 ceramics. Ceramics International, 2017, vol. 43, no. 8, pp. 6148–6155. doi: 10.1016/j.ceramint.2017.02.010
20.  Graves P.R., Johnston C., Campaniello J.J. Raman scattering in spinel structure ferrites. Materials Research Bulletin, 1988, vol. 23, no. 11, pp. 1651–1660. doi: 10.1016/0025-5408(88)90255-3


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика