Nikiforov
Vladimir O.
D.Sc., Prof.
doi: 10.17586/2226-1494-2017-17-4-658-663
SIGNAL DISCREPANCY ESTIMATION IN EQUIVALENT REPRESENTATION PROBLEM OF DISCRETE SYSTEM
Read the full article ';
For citation: Pavlov A.S., Ushakov A.V. Signal discrepancy estimation in equivalent representation problem of discrete system. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 4, pp. 658–663 (in Russian). doi: 10.17586/2226-1494-2017-17-4-658-663
Abstract
Subject of Research.The considered problems are representations of the discrete equivalent description of a continuous system to a discrete description with smaller interval than the original one provided that the zero-order hold devices are used as a memory element in the digital control of continuous system. It is shown that in connection with the above, there is a problem of the signal discrepancy estimation in the task of equivalent representation of these discrete systems. Method. Estimation method of signal discrepancy relies on the capabilities of the state space framework with the use of integral representations of continuous system dynamics equation. The scalar analytical assessment of a signal discrepancy between the initial and transformed systems is created on a difference norm of vectors of stimulated system movement. Main Results. The assessment problem is solved for boundaries of the scalar value interval for signal discrepancy state vectors of the source and resulting systems. Analytical expression for this case is received, and recommendations about the equivalent system formation with a smaller discrete interval are created on its basis. Practical Relevance. The obtained theoretical results can be used in the development and analysis of MIMO discrete systems when the system has different discrete intervals of separate channels.
Acknowledgements. This work was supported by the Government of the Russian Federation (Grant 074-U01), the Ministry of Education and Science of the Russian Federation (Project 14.Z50.31.0031) and the Russian Federation President Grant No.14.Y31.16.9281-НШ.
References