doi: 10.17586/2226-1494-2017-17-5-826-833


RESEARCH OF “WATER GLASS - GRAPHITE MICROPARTICLES” COMPOSITE MATERIAL BY THERMOGRAVIMETRY METHOD

A. S. Ustinov, E. A. Pitukhin


Read the full article  ';
Article in Russian

For citation: Ustinov A.S., Pitukhin E.A. Research of “water glass - graphite microparticles” composite material by thermogravimetry method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 826–833 (in Russian). doi: 10.17586/2226-1494-2017-17-5-826-833

Abstract

Subject Research. The paper presents results of research on the thermal stability of the composite material (CM) "water glass–graphite microparticles" under temperature variation and the substance composition in the initial state at the intermediate stages of the heating process, and on the residue composition. Method. The study was carried out by the thermal analysis with the use of thermogravimetry method, when the sample mass change depending on the temperature is recorded. Thus, the condition is observed that samples drive off volatiles as a result of physical or chemical processes in the CM. We used methods of x-ray crystallography and electron microscopy. Main Results. "Water glass–graphite microparticles" composite material is studied by the thermoanalytical method. The physical processes occurring during the heating of CM are described. Composite material structure  and component phases of the reaction products of microcomposition formation are defined by the x-ray diffraction analysis and electron microscopy. The stoichiometric coefficients of chemical reaction are obtained by the thermodynamic method. Practical Relevance. Composite material with the obtained characteristics can be used as a protective coating for building structures with the aim to increase fire resistance and reduce fire hazard.


Keywords: composite material, water glass, graphite filler, thermogravimetry, thermal effects

References
 1.     Han J.-H., Zhang H., Chu P.-F., Imani A., Zhang Z. Friction and wear of high electrical conductive carbon nanotube buckypaper/epoxy composites. Composites Science and Technology, 2015, vol.114, pp.1–10. doi: 10.1016/j.compscitech.2015.03.012
 
2.     He P., Yang Z., Yang J., Duan X., Jia D. et. al. Preparation of fully stabilized cubic-leucite composite through heat-treating Cs-substituted K-geopolymer composite at high temperatures. Composites Science and Technology, 2015, vol. 107, pp. 44–53. doi: 10.1016/j.compscitech.2014.11.009
3.     Jakubinek M.B., Ashrafi B., Zhang Y., Martinez-Rubi Y. et. al. Single-walled carbon nanotube–epoxy composites for structuraland conductive aerospace adhesives. Composites: Part B, 2015, vol. 69, pp. 87–93. doi: 10.1016/j.compositesb.2014.09.022
4.     Moghadam A.D., Omrani E., Menezes P.L., Rohatgi P.K. Mechanical and tribological properties of self-lubricating metal matrix nanocomposites reinforced by carbon nanotubes (CNTs) and graphene - a review. Composites Part B, 2015, vol. 77, pp.402–420.doi: 10.1016/j.compositesb.2015.03.014
5.     Romanenkov I.G., Levites F.A. Ognezashchita stroitel'nykh konstruktsii [Fire protection of building constructions]. Moscow, StroiizdutPubl., 1991, 320 p.(In Russian)
6.     Karpov Ya.S., Ivanovskaya O.V. Kompozitsionnye Materialy: Komponenty, Struktura, Pererabotka v Izdeliya [Composite Materials: Components, Structure, Processing into Products]. Khar'kov, National Aircraft Univ. Publ., 2001, 153 p.(In Russian)
7.     EreminaN.V. OgnezashchitnyeKompozitsiinaOsnoveZhidkogoSteklaiMekhanicheskiAktivirovannykhOksidovAlyuminiyaiMagniya. Dis. Kand. Tekhn. Nauk. Tomsk, 2007, 156 p. (In Russian)
8.     Volkova V.K. Teplofizicheskie Svoistva Kompozitsionnykh Materialov s Polimernoi Matritsei i Tverdykh Rastvorov [Thermophysical Properties of Composite Materials with Polymeric Matrix and Solid Solutions]. Moscow, Nauka Obrazovaniya Publ., 2011, 104 p.
9.     Gumula T., Rudawski A., Michalowski J., Blazewicz S. Fatigue behavior and oxidation resistance of carbon/ceramic composites reinforced with continuous carbon fibers. Ceramics International, 2015,vol. l41,no. 6, pp. 7381–7386.doi: 10.1016/j.ceramint.2015.02.046
10.  Gostev V.A., Pitukhin E.A., Ustinov A.S., Yakovleva D.A. Thermal insulation properties research of the composite material water glass-graphite microparticles. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 3, pp. 82–88. (In Russian)
11.  Pitukhin E.A., Ustinov A.S. Fire-resistance properties research of “water glass - graphite microparticles” composite material.Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 2, pp. 277–283. (In Russian). doi:10.17586/2226-1494-2016-16-2-277-283
12.  Al'myashev V.I., Gusarov V.V. Thermal Analysis Methods. Textbook. St. Petersburg, SPbGETU (LETI) Publ., 1999, 40 p. (In Russian)
13.  DIN 51007-1994. Thermal analysis; differential thermal analysis; principles, 11 p.
14.  ISO 11357-1:2016. Plastics - Differential scanning calorimetry (DSC) - Part 1: General principles. Geneva, International Organization for Standardization, 33 p.
Chemical Encyclopedia / Ed. I.L. Knunyants, N.S. Zefirov. Moscow, Sovetskaya Entsiklopediya Publ., 1998. (In Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2021 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика