doi: 10.17586/2226-1494-2017-17-6-961-996


ON MODERN APPROACH TO AIRPLANE-TYPE UNMANNED AERIAL VEHICLES DESIGN WITH SHORT TAKEOFF AND LANDING

P. V. Bulat, O. P. Minin


Read the full article  ';
Article in Russian

For citation: Bulat P.V., Minin O.P. On modern approach to airplane-type unmanned aerial vehicles design with short takeoff and landing. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2017, vol. 17, no. 6, pp. 961–996 (in Russian). doi: 10.17586/2226-1494-2017-17-6-961-996

Abstract

This publication opens a series of review papers devoted to the current design problems of the next generation unmanned airplanes that are expected to appear in the period from 2025 to 2035. The series of papers considers airplanes with vertical take-off and landing, air launch of small satellites into the orbit, cargo transportation tasks, issues related to new aerodynamic forms, as well as hybrid, combined and distributed power units. The first paper of the cycle is devoted to the conceptual aerodynamic design of the airplanes with a short take-off and landing, and with technical and economic characteristics on cruise flight conditions no worse than for traditional airplane based on aerodrome with long airstrip. We consider traditional linear methods for aerodynamic scheme analysis and weight analysis, as well. The main relationships and references to the works enabling the parametric analysis of the aerodynamic configuration are given. It is concluded that one of the most promising areas in the field of airplanes with a short take-off and landing is the development of aerodynamic circuits constructed as a "flying wing" of small aspect ratio and large structural height.


Keywords: national technological initiative, “Aeronet”, unmanned aerial vehicle, vertical takeoff and landing, short takeoff and landing, convertoplan, aerodynamics, Prandtl's linear lift theory, small aspect ratio wing

Acknowledgements. The work was supported by the Ministry of Education and Science of the Russian Federation (Agreement No.14.578.21.0203, unique identifier of applied scientific research RFMEFI57816X0203).

References
 1.     National Technology Initiative. Available at: http://nti.one/nti (accessed 16.06.2017).
2.     AeroNet 2017 - We still believe in STI, and we expect specific actions from the authorities. Available at: http://aerbas.ru/news/2017_06_15_aeronet_2017_-_my_vse_eshche_verim_v_nti (accessed 16.06.2017).
3.     AeroNet. Distributed Systems of Unmanned Aircrafts. Available at: http://nti.one/markets/aeronet(accessed 16.06.2017).
4.     Bulat P.V. On the Way to 5th and 6th Generation. Series of Articles. Parts 1-10. Available at: http://kb-dinamika.ru/publishing-dinamika(accessed 5.07.2017).
5.     KuüchemannD. The Aerodynamic Design of Aircraft. Ed. J.A. Schetz. Virginia, 2012, 555 p.
6.     FlandroG.A., McMahon H.M., Roach R.L. Basic Aerodynamics: Incompressible Flow. Cambridge University Press, 2012, 432 p.
7.     Drela M. Flight Vehicle Aerodynamics. Cambridge, MIT Press, 2014, 279 p.
8.     Vorob'ev N.F. Aerodynamics of Load-Bearing Surfaces in a Steady Flow. Novosibirsk,Nauka Publ., 1985,239 p. (In Russian)
9.     Belotserkovskii S.M. Thin Supporting Surface in Subsonic Gas Flow. Moscow, Nauka Publ., 1965,244 p. (In Russian)
10.  Voronov V.V. Unmanned cargo air transport: potential and prospects. Industry of Unmanned Aircraft Systems.Moscow,2016. (In Russian)
11.  Barsuk V.E., Anokhin G.G. Proposals on the Organization of Aircraft Production for Regional Airlines. Novosibirsk, SibNIA im. S.A. Chaplygina,2012. (In Russian)
12.  Grebenikov A.G., Parfenyuk V.V., Parfenyuk O.I., Udovichenko S.V. Analysis and selection of the combined scheme of a high-speed unmanned aircraft. Otkrytye Informatsionnye i Komp'yuternye Integrirovannye Tekhnologii, 2010, no. 48, pp. 51–63. (In Russian)
13.  Executive Summary XV-58 Manta. 31st Annual American Helicopter Society International Student Design Competition. Georgia Institute of Technology, 2014.
14.  Cabrit P. Fast rotorcraft LifeRCraft IADPD. Clean Sky 2. Information Day dedicated to the 1st Call for Proposals. Paris, 2015.
15.  Samoilov I.A., Stradomskii O.Yu., Fridlyand A.A., Shapkin V.S. State of the aviation transport in the current economic conditions. Commission for Transport and Transport Infrastructure of the Russian Union of Industrialists and Entrepreneurs. Moscow, 2016. (In Russian)
16.  Foresight of the Development of Aviation Science and Technology until 2030 and Beyond/ Ed. D.V. Manturov, B.S. Aleshin, V.I. Babkin et al. Moscow, TSAGIPubl., 2014,
280 p. (In Russian)
17.  Schetz J.A. Boundary Layer Analysis. London, Prentice-Hall, 1993, 586 p.
18.   Schlichting H.Boundary-Layer Theory. New York, McGraw-Hill, 1979, 419 p.
19.  Osterlund J.M. Experimental studies of zero pressure-gradient turbulent boundary-layer flow. Technical Report. Stockholm, Royal Institute of Technology,1999.
20.  Gundlach J. Designing Unmanned Aircraft Systems: A Comprehensive Approach. Ed. J.A. Schetz AIAA, 2012,
869 p.
21.  van Es G.W.H.Rapidestimationof the zero-lift drag coefficientof transport aircraft. Journal of Aircraft, 2002, vol. 39, no. 4, pp. 597–599. doi: 10.2514/2.2997
22.  Bolsunovsky A.L., Buzoverya N.P., Gurevich B.I., Denisov V.E. et al. Flying wing: problems and decisions. Aircraft Design, 2001, vol. 4, no. 4, pp. 193–219. doi: 10.1016/S1369-8869(01)00005-2
23.  Kuchemann D. Fluid mechanics and aircraft design. JASI, 1970, vol. 22, p. 141.
24.  Küchemann D., Weber J. Analysis of some performance aspects of various types of aircraft designed to fly over different ranges at different speeds. Progress in Aeronautical Sciences, 1968, vol. 9, pp. 329–456. doi: 10.1016/b978-1-4831-9985-6.50008-4
25.  Lee G.H. Possibilities of cost-reduction with all-wing aircraft. Journal of the Royal Aeronautical Society, 1965,vol. 69,pp. 744–749.doi: 10.1017/s0368393100081657
26.  Stepanov G.Yu. Theory of the wing in the works of N.E. Zhukovskii and S.A. Chaplygin. TSAGI Science Journal, 1997,vol. 28,no. 1, pp. 6–27.(In Russian)
27.  Anderson J.D., Jr. Fundamentals of Aerodynamics. 5th ed. NY, McGraw-Hill, 2011, 1106 p.
28.  Prandtl L. Theorie des Flugzeügtragflugels im zusammendrückbaren Medium. Luftfahrtforschung, 1936, vol. 13, pp. 313.
29.  Blenk H. Der Eindecker als tragende Wirbelfläche. ZAMM, 1925, vol. 5, no. 1, pp. 36–47. doi: 10.1002/zamm.19250050104
30.  Golubev V.V. Lectures on the Theory of the Wing. Moscow, Gostekhizdat Publ., 1949, 482 p. (In Russian)
31.  Zhukovskii N.E. Theoretical Foundations of Aeronautics,
vol. 5. Moscow, Gostekhizdat Publ., 1950. (In Russian)
32.  Chaplygin S.A. Pressure of a Plane-Parallel Flow on Occlusive Objects (to airplane theory). Collected Works,
vol. 2. Moscow, Gostekhizdat Publ., 1948. (In Russian)
33.  von Helmholtz Н. Uber Integrate der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal fur die Reine und Angewandte Mathematik, 1858, no. 55, pp. 25–55. doi: 10.1515/crll.1858.55.25
34.  Kutta M.W. Auftriebskrafter in stromenden Fliissigkeiten. Illustrierte Aero-nautische Mitteilungen, 1902, no. 6, pp. 133–135.
35.  Chaplygin S.A. Results of Theoretical Studies about the Airplanes Motion. Collected Works,vol. 2. Moscow, GostekhizdatPubl., 1948.(In Russian)
36.  D’AlembertParadoxe proposé aux Géomètres sur la résistance des fluides. Opuscules mathématiques.Paris, 1768,vol. 5,pp. 132–138.
37.  Lanchester W.F. Aerodynamics. London, 1907.
38.  Zhukovskii N.E. On Attached Vortices. Collected Works,
vol. 4. Moscow, Gostekhizdat Publ., 1949. (In Russian)
39.  Kochin N.E. Gidrodinamicheskaya Teoriya Reshetok. Moscow, Gostekhizdat Publ., 1949, 104 p. (In Russian)
40.  Kochin N.E., Kibel' I.A., Roze N.V. Theoretical Hydromechanics, part 1. Moscow, Fizmatgiz Publ., 1963,
584 p. (In Russian)
41.  Golubev V.V. Theory of the finite span airplane wing. Trudy TSAGI, 1931, no. 108.(In Russian)
42.  Dorodnitsyn A.A. Generalization of the carrier line theory to the case of a curved axis wing and an axis nonperpendicular to the flow. Prikladnaya Matematika i Mekhanika,1944,vol. 8,no. 1. (In Russian)
43.  Belotserkovskii S.M., Lifanov I.K. Numerical Methods in Singular Integral Equations and their Application to Aerodynamics, Theory of Elasticity, Electrodynamics. Moscow,Nauka Publ., 1985,256 p. (In Russian)
44.  Sears W.R. A new treatment of the lifting-line wing theory, with application to rigid and elastic wings. Quarterly of Applied Mathematics, 1948, vol. 6, no. 3, pp. 239–255. doi: 10.1090/qam/27194
45.  Sedov L.I. Flat Problems of Hydrodynamics and Aerodynamics. Moscow, Gostekhizdat Publ., 1950,443 p. (In Russian)
46.  Anderson J.D. Jr., Corda S., Van Wie D.M. Numerical lifting line theory applied to drooped leading-edge wings below and above stall. Journal of Aircraft, 1980, vol. 17, no. 12, pp. 898–904. doi: 10.2514/3.44690
47.  Landau L.D., Lifshits E.M. Theoretical Physics, vol. 6. Hydrodynamics. Moscow, Nauka Publ., 1986, 736 p. (In Russian)
48.  Maskell E.C. Flow separation in free dimensions. RAE R Aero, 1955, vol. 2565.
49.  Falkner V.M. The solution of lifting-plane problems by vortex-lattice theory. ARC Report and Memoranda, 1953, no. 2591.
50.  Belotserkovskii S.M. Horseshoe-shaped vortex with unsteady movements. Prikladnaya Matematika i Mekhanika, 1955, vol. 19, no. 2. (In Russian)
51.  Bertin J.J., Smith M.L. Aerodynamics for Engineers. 2nd ed. London, Prentice-Hall, 1989, 576 p.
52.  Belotserkovskii S.M., Skripach B.K. Aerodynamic Derivatives of an Aircraft and Wings at Subsonic Speeds. Moscow, Nauka Publ., 1975, 424 p. (In Russian)
53.  Vorob'ev N.V., Shishkina G.I. On the question of a discrete vortex scheme of the wing. In Problems of Spatial Configuration Bodies Flow. Novosibirsk, ITPM Publ., 1978. (In Russian)
54.  Johnson F.T. A general panel method for the analysis and design of arbitrary configurations in incompressible flows. NASA CR 3079, 1980.
55.  Il'inskii N.B., Abzalilov D.F. Mathematical Problems in the Wing Profiles Design: Complicated Flow Schemes; Construction and Optimization of the Wing Profiles Shape. Kazan', KSU Publ., 2011,284 p.(In Russian)
56.  Prandtl L. The generation of vortices in fluids of small viscosity. Journal of the Royal Aeronautic Society, 1927, vol. 31, pp. 720–741. doi: 10.1017/s0368393100139872 
57.  Flax A.H., Lawrence H.R. The aerodynamics of low-aspect-ratio wings and wing-body combinations. Proc. 3rdAnglo-American Aeron.Conf., 1951, vol. 363.
58.  Jones R.T. Properties of low-aspect ratio pointed wings at speeds below and above the speed of sound. NACA R 835, 1946.
59.  Chushkin P.I. Calculation of circulation distribution over rectangular wings of small elongation. In Collection of Theoretical Works on Aerodynamics. Moscow, Oborongiz Publ., 1957. (In Russian)
60.  Kolesnikov G.A. Method for calculating the distribution circulation of the small elongation wings. In Collection of Theoretical Works on Aerodynamics. Moscow, Oborongiz Publ., 1957. (In Russian)
61.  Struminskii V.V., Lebed' N.K. Method for calculating the circulation distribution along the sweep of the swept wing. In Collection of Theoretical Works on Aerodynamics. Moscow, Oborongiz Publ., 1957. (In Russian)
62.  Helmbold H.B. Der unverwundene ellipsenflugel als tragende Fläche. Jahrb, 1942.
63.  Kuchemann D. A simple method for calculating the span and chordwise loading on straight and swept wings of any given aspect ratio at subsonic speeds. RAE R Aero,1952,vol. 2476.
64.  Betz A., Prandtl L. Schraubenpropeller mit geringstem enegieverlust. Goettnger Nachtrichten, 1919, pp. 193–217.
65.  Smith J.H.H. Theoretical work on the formation of vortex sheets. Progress in Aerospace Sciences, 1966, vol. 7, pp. 35–51. doi: 10.1016/0376-0421(66)90005-4
66.  Polhamus E.C. A concept for the vortex lift of sharp-edge delta wings based on a leading edge suction analogy. NASA TN D-3767 (N67-13171), 1966.
67.  Polhamus E.C. Charts for predicting the subsonic vortex-lift characteristics of arrow, delta, and diamond wings. NASA TN D-6243 (N71-21973), 1971.
68.  Polhamus E.C. Application of the leading-edge suction analogy of vortex lift to the drag due to lift of sharp-edged delta wings. NASA TN D-4739, (N68-21990), 1968.
69.  Lamar J.E., Frink N.T. Aerodynamic features of designed strake-wing configurations. Journal of Aircraft, 1982, vol. 19, pp. 639–646. doi: 10.2514/3.57444
70.  Erickson G.E. Vortex flow correlation. Proc. 13th Congr. Int. Council of Aeronautical Sciences, ICAS. Seattle, 1982.
71.  Erickson G.E., Hall R.M., Banks D.W., Del Frate J.H., Schreiner J.A., Hanley R.J., Pulley C.T. Experimental investigation of the F/A-18 vortex flows at subsonic through transonic speeds. Proc. 7th Appl. Aerodyn. Conf. Seattle, 1989.
72.  Bartlett G.E., Vidal R.J. Experimental investigations of influence of edge shape on the aerodynamic characteristics of low aspect ratio wings at low speeds. Journal of the Aeronautical Sciences, 1955, vol. 22, pp. 517–533. doi: 10.2514/8.3391
73.  Peckham D.H. Low-speed wind tunnel tests on a series of uncambered slender pointed wings with sharp edges. ARC R&M, 1958, no. 3186.
74.  Lamboune N.C., Bryer D.W. The bursting of leading edge vortices: some observation and discussion of the phenomenon. British ARC R & M, 1962, no. 3282.
75.  Lee M., Ho C.M. Lift force of delta wings. ASME Applied Mechanics Review, 1990, vol. 43, no. 9, pp. 209–221. doi: 10.1115/1.3119169
76.  Mitchell A.M., Molton P. Vortical substructures in the shear layers forming leading-edge vortices. AIAA Journal, 2002, vol. 40, no. 8, pp. 1689–1692. doi: 10.2514/2.1844
77.  Heron I. Vortex burst behaviour of a dynamically pitched delta wing under the influence of a von Karman vortex street and unsteady freestream. Ph. D. thesis. Wichita State Univ., USA, 2007.
78.  Wentz W.H., Kohlman D.L. Vortex breakdown on slender sharp-edged wings. Journal of Aircraft, 1971, vol. 8,no. 3, pp. 156–161. doi: 10.2514/3.44247
79.  Cui Y.D. Studies of vortex breakdown and its stability in a confined cylindrical container. Ph. D. thesis. National Univ. Singapore, 2009.
80.  Lim T.T., Cui Y.D. On the generation of a spiral-type vortex breakdown in an enclosed cylindrical container. Physics Fluids, 2005,vol. 17,no.4,art. 044105. doi: 10.1063/1.1872072
81.  Belotserkovskii S.N., Nisht M.I. Continuous and Non-Continuous Flow of Thin Wings by an Ideal Liquid. Moscow,NaukaPubl., 1978,352 p. (In Russian)
82.  Vorob'ev N.V., Shashkina G.N. Numerical simulation of the vortices descend conditions from the wing edges. In Problems of Aerodynamics of Spatial Configuration Objects. Novosibirsk, ITPM Publ., 1982. (In Russian)
83.  Vorob'ev N.V. Discrete scheme in the case of nonplanar wings. In Investigation of Flow by Numerical Methods. Novosibirsk,ITPM Publ.,1976. (In Russian)
84.  Byushgens G.S. Aerodynamics, Stability and Controllability of Supersonic Aircraft. Moscow,FizmatlitPubl., 1998,793 p. (In Russian)
85.  Eger S.M., Mishin V.F., Liseitsev N.K. et al. Aircraft Design: Textbook for Universities. 3rd ed. Moscow,MashinostroeniePubl., 1983,616 p.(In Russian)
86.  Ignat'ev S.G. To the calculation of high-elongation polars at subcritical M. Trudy TSAGI, 1978, 45 p. (In Russian)
87.  Zhigulev V.N., Krotkov D.N., Shkadov L.M. Some modern problems of optimal aerodynamic design. Trudy TSAGI,1977,no.1842. (In Russian)
88.  Zhigulev V.N. On thin wings minimum resistance. In Aeromechanics. Moscow, Nauka Publ., 1976. (In Russian)
89.  Zhigulev V.N. Some problems of inductive wing resistance. Trudy TSAGI, 1977, no. 1842. (In Russian)
90.  Zhigulev V.N. On optimal shape of the midline of the wing profile. Trudy TSAGI,1977,no.1842.(In Russian)
Henderson W.P. Studies of various factors affecting drag due to lift at subsonic speed. NASA TN X, ND-3584, 1966.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика