doi: 10.17586/2226-1494-2017-17-6-997-1003


SEARCH AUTOMATION OF BINARIZATION OPTIMUM LEVEL FOR SYNTHESIZED HOLOGRAMS

S. N. Koreshev, O. V. Nikanorov, D. S. Smorodinov, D. H. Nguyen


Read the full article  ';
Article in Russian

For citation: Koreshev S.N., Nikanorov O.V., Smorodinov D.S., Nguyen Duy Hung. Search automation of binarization optimum level for synthesized holograms. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2017, vol. 17, no. 6, pp. 997–1003 (in Russian). doi: 10.17586/2226-1494-2017-17-6-997-1003

Abstract

The paper considers the features of synthesized holograms suitable for practical use. It is established that binary holograms are the first of all suitable ones for successful application in practice. In order to select the most suitable (optimal) level of hologram binarization, we propose a criterion for estimating the quality of an image reconstructed with a binary hologram. An algorithm is developed to find the optimal level. On the basis of the conducted experiments it is established that the introduction of the developed module gives the possibility to reduce the search time of the optimal binarization level of the hologram by eleven times in comparison with manual search.


Keywords: hologram, synthesized hologram, hologram reconstruction, binarization, threshold processing, automation

References
 1.     Narayanamurthy C.S., Pedrini G., Osten W. Digital holographic photoelasticity. Applied Optics, 2017, vol. 56, no. 13, pp. F213–F217. doi: 10.1364/AO.56.00F213
2.     Zhou W., Yu Y., Duan Y., Asundi A. Phase reconstruction of live Human Embryonic Kidney 293 cells based on two off-axis holograms. Proceedings of SPIE, 2009, vol. 7375, art. 737502. doi: 10.1117/12.838970
3.     Kim M.K. Principles and techniques of digital holographic microscopy. SPIE Reviews, 2010, vol. 1, art. 018005. doi: 10.1117/6.0000006
4.     Kuzyakov B.A., Tikhonov R.V., Shmelev V.A., Tsapenko S.V., Ushakov A.V., Markov I.Yu. Increase of accessibility of optical combined communication system. Innovatsii na Osnove Informatsionnykh i Kommunikatsionnykh Tekhnologii, 2014, no. 1, pp. 528–530. (In Russian)
5.     Morozov A.M., Kononov I.V. Optical Holographic Devices. Moscow, Mashinostroenie Publ., 1988, 128 p. (In Russian)
6.     Gusev A.I. Nanomaterials, Nanostructures, Nanotechnologies. Moscow, Fizmatlit Publ., 2005, 416 p. (In Russian)
7.     Baltiiskii S.A., Gurov I.P., De Nikola S., Koppola D., Ferraro P. Modern methodsof digital holography. In Problems of Coherent and Nonlinear Optics. St. Petersburg, SPbSU ITMO Publ., 2004, pp. 91–117. (In Russian)
8.     Koreshev S.N., Nikanorov O.V., Smorodinov D.S. Influence of the discreteness of synthetic and digital holograms on their imaging properties. Computer Optics, 2016, vol. 40, no. 6, pp. 793–801. doi: 10.18287/2412-6179-2016-40-6-793-801
9.     Zhang Y., Lu Q., Ge B. Elimination of zero-order diffraction in digital off-axis holography. Optics Communications, 2004, vol. 240, no. 4-6, pp. 261–267. doi: 10.1016/j.optcom.2004.06.040
10.  Chen G.L., Lin C.Y., Kuo M.K., Chang C.C. Numerical suppression of zero-order image in digital holography. Optics Express, 2007, vol. 15, no. 14, pp. 8851–8856. doi: 10.1364/OE.15.008851
11.  Koreshev S.N., Nikanorov O.V., Smorodinov D.S.Imaging properties of discrete holograms. II. How structural modification of the hologram and a high spatial carrier frequency of the hologram structure that exceeds the Nyquist frequency affects the image reconstruction. Journal of Optical Technology, 2014, vol. 81, no. 4, pp. 204–208. doi: 10.1364/JOT.81.000204
12.  Johnson S. Stephen Johnson on Digital Photography. O'Reilly Media, 2006, 305 p.
13.  Slinger C., Cameron C., Coomber S. et al. Recent developments in computer-generated holography: Toward a practical electroshock system for interactive 3D visualization. Proceedings of SPIE, 2004, vol. 5209, pp. 27–41. doi: 10.1117/12.526690
14.  Koreshev S.N., Smorodinov D.S., Nikanorov O.V., Gromov A.D. Intensity equalization for elements for binary-object images reconstructed using synthesized hologram projectors. Optics and Spectroscopy, 2013, vol. 114, no. 2, pp. 288-292. doi: 10.1134/S0030400X13020136
15.  Koreshev S.N. Diffraction efficiency of discrete binary phase holograms. Optics and Spectroscopy, 1978, vol. 44, pp. 39–42. (In Russian)
16.  Koreshev S.N., Nikanorov O.V., Gromov A.D. Method of synthesizing hologram projectors based on breaking down the structure of an object into typical elements, and a software package for implementing it. Journal of Optical Technology, 2012, vol. 79, no. 12, pp. 769–774.
17.  Koreshev S.N., Nikanorov O.V., Ivanov Yu.A., Kozulin I.A. Program system for synthesis and digital reconstruction of holograms-projectors: synthesis parameters effect on image reconstruction quality. Journal of Optical Technology, 2010, vol. 77, no. 1, pp. 33-37.
18.  Koreshev S.N., Nikanorov O.V., Gromov A.D. Modernized software complex for synthesis and reconstruction of Fresnel holograms-projectors. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2012, no. 6, pp. 12–17. (In Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика