Menu
Publications
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief
Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2017-17-6-1159-1166
MODELING OF LOCOMOTOR SYSTEM DYNAMICS
Read the full article ';
Article in Russian
For citation: Musalimov V.M., Paasuke M., Gapeyeva H., Ereline J., Erofeev M.A. Modeling of locomotor system dynamics. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2017, vol. 17, no. 6, pp. 1159–1166 (in Russian). doi: 10.17586/2226-1494-2017-17-6-1159-1166
Abstract
For citation: Musalimov V.M., Paasuke M., Gapeyeva H., Ereline J., Erofeev M.A. Modeling of locomotor system dynamics. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2017, vol. 17, no. 6, pp. 1159–1166 (in Russian). doi: 10.17586/2226-1494-2017-17-6-1159-1166
Abstract
The paper presents the experimental approaches to mathematical model creation for the lower limb movement of a human's locomotor system. The experimental research data based on analysis of four persons manner of walking has been used as initial conditions. The data has been obtained in the kinesiology and biomechanics laboratory of Tartu University, Estonia. The model has been constructed with the use of the measurement data of hip and knee flexion kinematic parameters. The frequency ratio of oscillatory movements during the hip and knee flexion has been established.. The research has been performed on the "toe-to-ground contact" phase kinematics that gave the possibility to discover the constancy parameter being of great concern for the model of system with one degree of freedom (in the jump-off phase backed on the forefoot) and with two degrees of freedom (in transfer phase). We took into account elastic and viscoelastic model parameters in the calculation.
Keywords: lower limb mathematical model, step phases, biomechanics, elastic and viscoelastic model parameters, constancy parameter
References
References
1. Haken H., Kelso J.A.S., Bunz H. A theoretical model of phase transitions in human hand movements. Biological Cybernetics, 1985, vol. 51, no. 5, pp. 347–356. doi: 10.1007/BF00336922
2. Anishchenko V.S., Vadivasova T.E., Shimanskii-Gaier L. Dynamic and Statistical Description of Oscillatory Systems. Moscow-Izhevsk, Regulyarnaya i Khaoticheskaya Dinamika Publ., 2005, 156 p.
3. DeLisa J.A. Gait Analysis in the Science of Rehabilitation. US Depatment of Veterans Affairs, 1998, 134 p.
4. Gapeyeva H., Ereline J., Haviko T., Aibast H., Martson A., Paasuke M. Gait characteristics and muscle strength in total knee arthroplasty patients with patellofemoral pain syndrome before and six months after surgery. Acta Kinesiologiae Universitatis Tartuensis, 2011, vol. 17, pp. 37–52. doi: 10.12697/akut.2011.17.03
5. Prakash C., Gupta K., Mittal A., Kumar R., Laxmi V. Passive marker based optical system for gait kinematics for lower extremity. Procedia Computer Science, 2015, vol. 45, pp. 176–185. doi: 10.1016/j.procs.2015.03.116
6. Cimolin V., Cau N., Galli M., Santovito C., Grugni G., Capodaglio P. Gait initiation and termination strategies in patients with prader-willi syndrome. Journal of Neuro Engineering and Rehabilitation, 2017, vol. 14, no. 1, art. 44. doi:10.1186/s12984-017-0257-7
7. Davis R.B., Ounpuu S., Tyburski D., Gage J.R. A gait analysis data collection and reduction technique. Human Movement Science, 1991, vol. 10, no. 5, pp. 575–587. doi: 10.1016/0167-9457(91)90046-Z
8. Pers M. The dynamics of human gait. European Journal of Physics, 2005, vol. 26, no. 3, pp. 525–534. doi: 10.1088/0143-0807/26/3/017
9. Vaughan C.L., Davis B.L., O’Connor J.C. Dynamics of Human Gait. Illinois, Human Kinetics Publ., 1992, 152 p.
10. Cappozzo A. Gait analysis methodology. Human Movement Science, 1984, vol. 3, no. 1-2, pp. 27–50. doi: 10.1016/0167-9457(84)90004-6
11. Allard P. Three-Dimensional Analysis of Human Movement. Illinois, Human Kinetics Publ., 1995.
12. Winter D.A. Biomechanics and Motor Control of Human Movement. 2nd ed. NY, John Wiley & Sons, 1990, 277 p.
13. Anderson F.C., Pandy M.G. Static and dynamic optimization solutions for gait practically equivalent. Journal of Biomechanics, 2001, vol. 34, no. 2, pp. 153–161. doi: 10.1016/S0021-9290(00)00155-X
14. Camomilla V., Cereatti A., Vannozzi G., Cappozzo A. An optimized protocol for hip joint centre determination using the functional method. Journal of Biomechanics, 2006, vol. 39, no. 6, pp. 1096–1106. doi: 10.1016/j.jbiomech.2005.02.008
15. Bell A.L., Pedersen D.R., Brand R.A. A comparison of the accuracy of several hip center location prediction methods. Journal of Biomechanics, 1990, vol. 23, no. 6, pp. 617–621. doi: 10.1016/0021-9290(90)90054-7