Menu
Publications
2024
2023
2022
2021
2020
2019
2018
2017
2016
2015
2014
2013
2012
2011
2010
2009
2008
2007
2006
2005
2004
2003
2002
2001
Editor-in-Chief

Nikiforov
Vladimir O.
D.Sc., Prof.
Partners
doi: 10.17586/2226-1494-2017-17-6-1171-1176
DIGITALIZATION OF PROJECT AND PRODUCTION PROCEDURES AS A TOOL FOR INSTRUMENTATION DESIGN AUTOMATION IN INDUSTRY 4.0
Read the full article

Article in Russian
For citation: Gurjanov A.V., Shukalov A.V., Zakoldaev D.A., Zharinov I.O., Kostishin M.O. Digitalization of project and production procedures as a tool for instrumentation design automation in Industry 4.0. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2017, vol. 17, no. 6, pp. 1171–1176 (in Russian). doi: 10.17586/2226-1494-2017-17-6-1171-1176
Abstract
For citation: Gurjanov A.V., Shukalov A.V., Zakoldaev D.A., Zharinov I.O., Kostishin M.O. Digitalization of project and production procedures as a tool for instrumentation design automation in Industry 4.0. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2017, vol. 17, no. 6, pp. 1171–1176 (in Russian). doi: 10.17586/2226-1494-2017-17-6-1171-1176
Abstract
We propose organization schemes for project and production procedures in industrial companies when performing full-scale experiments on instrument-making products. The paper also presents control flow chart for correction of design, program and technological documentation in the product life cycle. We define the procedures which digitalization allows for the automation of development and subsequent documentation support. This process is aimed at transition of the industrial companies to functioning under the conditions of the digital economy according to the Industry 4.0 production standard. The study shows that implementation effect for the most advanced industrial technologies can be achieved by applying the Internet of Things and the imitation modeling technologies using the product digital models as a component of the engineering workstation. The work results can be used to develop the automation design algorithms for instrument-making (machine-building) digital production that is functioning in the digital economy conditions of the Industry 4.0 production standard.
Keywords: design, production, automation, testing, Industry 3.0, Industry 4.0
References
References
1. Theorin A., Bengtsson K., Provost J., Lieder M., Johnsson Ch., Lundholm Th. An event-driven manufacturing information system architecture for Industry 4.0. International Journal of Production Research, 2017, vol. 55, no. 5, pp.1297–1311. doi: 10.1080/00207543.2016.1201604
2. Liao Y., Deschamps S., Loures E.F.R., Ramos L.F.P. Past, present and future of Industry 4.0 ― a systematic literature review and research agenda proposal. International Journal of Production Research, 2017, vol. 55, no. 12, pp. 3609–3629. doi: 10.1080/00207543.2017.1308576
3. Wang Sh., Wan J., Li D., Zhang Ch. Implementing smart factory of Industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 2016, art. 3159805. doi: 10.1155/2016/3159805
4. Jung K., Choi S.S., Kulvatunyou B., Cho H., Morris K.S. A reference activity model for smart factory design and improvement. Production Planning and Control, 2017, vol. 28, no. 2, pp. 108–122. doi: 10.1080/09537287.2016.1237686
5. Fischer Th., Ruhland J. Scalable planning in the semantic web ― a smart factory assembly line balancing example. Proc. Int. Conf. on Web Intelligence. Atlanta, USA, 2013,vol. 1, pp. 221–226. doi: 10.1109/WI-IAT.2013.32
6. Shpilevoy V., Shishov A., Skobelev P., Kolbova E., Kazanskaia D., Shepilov Ya., Tsarev А. Multi-agent system «Smart factory» for real-time workshop management in aircraft jet engines production. IFAC Proceedings Volumes, 2013, vol. 46, no. 7, pp. 204–209. doi: 10.3182/20130522-3-BR-4036.00025
7. Radziwon A., Bilberg A., Bogers M., Madsen E.S. The smart factory: exploring adaptive and flexible manufacturing solutions. Procedia Engineering, 2014, vol. 69, pp. 1184–1190. doi: 10.1016/j.proeng.2014.03.108
8. Silva F., Gamarra C.J., Araujo Jr.A.H., Leonardo J. Product lifecycle management, digital factory and virtual commissioning: analysis of these concepts as a new tool of lean thinking. Proc. Int. Conf. on Industrial Engineering and Operations Management. Dubai, 2015, pp. 911–915.
9. Lavrin A., Zelko M. Moving toward the digital factory in raw material resources area. Acta Montanistica Slovaca, 2010, vol. 15, no. 3, pp. 225–231.
10. Hwang G., Lee J., Park J., Chang T.-W. Developing performance measurement system for Internet of Things and smart factory environment. International Journal of Production Research, 2017, vol.55, no.9, pp.2590–2602. doi: 10.1080/00207543.2016.1245883
11. Qu T., Thurer M., Wang J., Wang Z., Fu H., Li C. System dynamics analysis for an Internet-of-Things-enabled production logistics system. International Journal of Production Research, 2017, vol. 55, no. 9, pp. 2622–2649. doi: 10.1080/00207543.2016.1173738
12. Zuehlke D. SmartFactory – towards a factory-of-things. Annual Reviews in Control, 2010, vol. 34, pp. 129–138. doi: 10.1016/j.arcontrol.2010.02.008