DOI: 10.17586/2226-1494-2018-18-1-50-57


FUNCTIONAL GROUPS IONIZATION EFFECT ON CONFORMATIONAL PROPERTIES OF DENDRITIC MOLECULAR BRUSHES

I. V. Mikhailov, A. A. Darinskii, F. Leermakers


Read the full article 
Article in Russian

For citation: Mikhailov I.V., Darinskii A.A., Leermakers F.A.M. Functional groups ionization effect on conformational properties of dendritic molecular brushes. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 50–57 (in Russian). doi: 10.17586/2226-1494-2018-18-1-50-57

Abstract
 Conformational properties of dendronized molecular brushes with ionized terminal groups in the dilute solution were studied by the Scheutjens-Fleer numerical self-consistent field method. Brushes with the same molecular mass and grafting density of dendrons but different generation number were compared. The ionic strength was varied within the conditions of the good (athermal) solvent. It was shown that the brush thickness increases with the ionic strength decrease as a result of the deformation of grafted dendrons. The induced persistence length, which characterizes the contribution of the grafted branches into the bending elasticity of the brush, behaves differently at large and small ionic strengths. At high salt concentration the brushes with more branched dendrons show smaller bending elasticity similar to their neutral analogs. At low ionic strengths the induced persistence length increases by an order and depends very weakly on the dendron architecture. 

Keywords: molecular brushes, dendrons, polyelectrolytes, ionic strength, persistent length

Acknowledgements. The work was supported by the RFBR grant 16-03-00775a, the 3-OCSM program and the Russian Government grant 074-U01.

References
 1.      Zhang B., Wepf R., Fischer K., Schmidt M., Besse S. et al. The largest synthetic structure with molecular precision: towards a molecular object. Angewandte Chemie - International Edition, 2011, vol. 50, no. 3, pp. 737–740. doi: 10.1002/anie.201005164
2.      Sheiko S.S., Sumerlin B.S., Matyjaszewski K. Cylindrical molecular brushes: synthesis, characterization and properties. Progress in Polymer Science, 2008, vol. 33, no. 7, pp. 759–785. doi: 10.1016/j.progpolymsci.2008.05.001
3.      Borisov O.V., Zhulina E.B., Birshtein T.M. Persistence length of dendritic molecular brushes. ACS Macro Letters, 2012, vol. 1, no. 10, pp. 1166–1169. doi: 10.1021/mz3003903
4.      Feuz L., Leermakers F.A.M., Textor M., Borisov O.V. Bending rigidity and induced persistence length of molecular bottle brushes:  a self-consistent-field theory. Macromolecules, 2005, vol. 38, no. 21, pp. 8891–8901. doi: 10.1021/ma050871z
5.      Mikhailov I.V., Darinskii A.A., Zhulina E.B., Borisov O.V., Leermakers F.A.M. Persistence length of dendronized polymers: the self-consistent field theory. Soft Matter, 2015, vol. 11, no. 48, pp. 9367–9378. doi: 10.1039/c5sm01620g
6.      ZhulinaE.B.,Borisov O.V. Polyelectrolytes grafted to curved surfaces. Macromolecules,1996, vol. 29, no. 7,
pp. 2618–2626. doi: 10.1021/ma9515801
7.      Qu L., Jin X., Liao Q. Numerical self-consistent field theory of cylindrical polyelectrolyte brushes. Macromolecular Theory and Simulations,2009, vol. 18, no. 3, pp. 162–170. doi: 10.1002/mats.200990004
8.      Guo Y., van Beek J.D., Zhang B., Colussi M., Walde P. et al. Tuning polymer thickness: synthesis and scaling theory of homologous series of dendronized polymers. Journal of the American Chemical Society, 2009, vol. 131, no. 33, pp. 11841–11854. doi: 10.1021/ja9032132
9.      Shavykin O.V., Popova E.V., Darinskii A.A., Neelov I.M., Leermakers F. Computer simulation of local mobility in dendrimers with asymmetric branching by Brownian dynamics method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 5, pp. 893–902. (In Russian). doi: 10.17586/2226-1494-2016-16-5-893-902
10.   Popova E.V., Shavykin O.V., Neelov I.M., Leemakers F. Molecular dynamics simulation of lysine dendrimer and semax peptides interaction. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 4, pp. 716–724. (In Russian). doi: 10.17586/2226-1494-2016-16-4-716-724
11.   Neelov I.M., Mistonova A.A., Khvatov A.Y., Bezrodny V.V. Molecular dynamic simulation of peptide polyelectrolytes. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 4, pp. 169–175. (In Russian).
12.   Efthymiopoulos P., Vlahos C., Kosmas M. Theoretical study of the size and the shape of linear dendronized polymers in good and selective solvent. Macromolecules, 2009, vol. 42, no. 4, pp. 1362–1369. doi: 10.1021/ma801609f
13.   Fleer G.J., Cohen Stuart M.A., Scheutjens J.M.H.M., Cosgrove T., Vincent B. Polymers at Interfaces. London, Chapman & Hall, 1993, 496 p.
14.   Doi M., Edwards S.F. The Theory of Polymer Dynamics. Oxford, 1986, 406 p.
Van der Schee H.A., Lyklema J. A lattice theory of polyelectrolyte adsorption. The Journal of Physical Chemistry,1984, vol. 88, no. 26, pp. 6661–6667. doi: 10.1021/j150670a031


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика