doi: 10.17586/2226-1494-2018-18-1-65-71


INTERNAL STRUCTURE STUDY OF POLYURETHANE-POLYUREA BY NUCLEAR MAGNETIC RESONANCE METHOD

S. A. Ostanin, V. V. Zuev, M. V. Mokeev


Read the full article  ';
Article in Russian

For citation: Ostanin S.A., Zuev V.V., Mokeev M.V. Internal structure study of polyurethane-polyurea by nuclear magnetic resonance method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 65–71 (in Russian). doi: 10.17586/2226-1494-2018-18-1-65-71

Abstract

 We study the effect of chemical composition, solubility parameter of the segments and their length on the size of the domains, interphase thickness of the interfacial layer and the degree of phase separation in polyurethane-polyurea synthesized from oligomeric diisocyanate, cuamine M and polyols based on polyethylene oxide, polypropylene oxide and polybutadiene. The measurements were performed by a variety of techniques with specific pulse sequence such as proton spin-diffusion solid-state nuclear magnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy with cross-polarization. The measurements were carried out on Bruker Avance II 500 operating at proton frequency equal to 500.13 MHz. It was found that the properties of segmented polyurethane-polyurea depend directly on the degree of phase separation between the hard segments and the mobile matrix. The study of the transverse relaxation time of the samples showed that the molecular mobility in polyurethane is represented by four components. Understanding of the polymer formation process, components distribution by volume, and knowledge about predisposition to form certain connections can be used for creation of polymeric materials with the required characteristics important for the industry


Keywords: 1H spin-diffusion solid-state NMR, polyurethane, polyurea, domain size, interphase thickness, phase separation degree, block-copolymer, relaxation processes

References
 
1.      Chattopadhyay D.K., Raju K.V.S.N. Structural engineering of polyurethane coatings for high performance applications. Progress in Polymer Science, 2007, vol. 32, no. 3,
pp. 352–418. doi: 10.1016/j.progpolymsci.2006.05.003
2.      Mishra A., Aswal V.K., Maiti P. From nanostructure to microstructure self-assembly of aliphatic polyurethanes: the effect on mechanical properties. Journal of Physical Chemistry B, 2010, vol. 114, no. 16, pp. 5292–5300. doi: 10.1021/jp100599u
3.      Patel R.H., Patel K.S. Synthesis and characterization of flame retardant hyperbranched polyurethanes for nano-composite and nano-coating applications. Progress in Organic Coatings, 2015, vol. 88, pp. 283–292. doi: 10.1016/j.porgcoat.2015.07.007
4.      Malay O., Oguz O., Kosak C., Yilgor E., Yilgor I., Menceloglu Y.Z. Polyurethaneurea-silica nanocomposites: preparation and investigation of the structure-property behavior. Polymer, 2013, vol. 58, no. 20, pp. 5310–5320. doi: 10.1016/j.polymer.2013.07.043
5.      Voda A., Beck K., Schauber T., Adler M., Dabisch T. et al. Investigation of soft segments of thermoplastic polyurethane by NMR, differential scanning calorimetry and rebound resilience. Polymer Testing, 2006, vol. 25, no. 2, pp. 203–213. doi: 10.1016/j.polymertesting.2005.10.007
6.      Monnerie L., Halary J.L., Kausch H.-H. Deformation, yield and fracture of amorphous polymers: relation to the secondary transitions. In Intrinsic Molecular Mobility and Toughness of Polymers I. Springer, 2005, pp. 215−372. doi: 10.1007/b136957
7.      Steinbeck C.A., Chmelka B.F. Rapid 1H{13C}-resolved diffusion and spin-relaxation measurements by NMR spectroscopy. Journal of the American Chemical Society, 2005, vol. 127, no. 33, pp. 11624–11635. doi: 10.1021/ja0439064
8.      Li X.J., Fu W.G., Wang Y.N., Chen T.H., Liu X.H. et al. Solid-State NMR characterization of unsaturated polyester thermoset blends containing PEO-PPO-PEO block copolymers. Polymer, 2008,vol. 49, no. 12, pp. 2886–2897. doi: 10.1016/j.polymer.2008.04.042
9.      Saalwachter K., Thomann Y., Hasenhindl A., Schneider H. Direct observation of interphase composition in block copolymers. Macromolecules, 2008, vol. 41, no. 23,
pp. 9187–9191. doi: 10.1021/ma802094h
10.   Jack K.S., Wang J.H., Natanson A., Register R.A. Characterization of the microdomain structure in polystyrene-polyisoprene block copolymers by 1H spin diffusion and small-angle X-ray scattering methods. Macromolecules, 1998,vol. 31, no. 10, pp. 3282–3291. doi: 10.1021/ma971436a 
11.   Mauria M., Thomannb Y., Schneidera H., Saalwachter K. Spin-diffusion NMR at low field for the study of multiphase solids.Solid State Nuclear Magnetic Resonance,2008, vol. 34, no. 1–2, pp. 125–141. doi: 10.1016/j.ssnmr.2008.07.001
12.   Saalwachter K. Proton multi-quantum NMR for the study of chain dynamics and structural constraints in polymeric soft materials. Progress in Nuclear Magnetic Resonance Spectroscopy, 2007, vol. 51, pp. 1–35. doi: 10.1016/j.pnmrs.2007.01.001
13.   Mellinger F.. Wilhelm M., Spiess H.W. Calibration of 1H NMR spin diffusion coefficients for mobile polymers through transverse relaxation measurements. Macromolecules, 1999, vol. 32, no. 14, pp. 4686–4691. doi: 10.1021/ma9820265
14.   Hsieh A.J., Chantawansri T.L., Hu W., Strawhecker K.E., Casem D.T. et al. New insight into microstructure-mediated segmental dynamics in select model poly(urethane urea) elastomers. Polymer, 2014, vol. 55, no. 7, pp. 1883–1892. doi: 10.1016/j.polymer.2014.02.037
15.   Hu W., Patil N.V., Hsieh A.J. Glass transition of soft segments in phase-mixed poly(urethane urea) elastomers by time-domain 1H and 13C solid-state NMR. Polymer, 2016,vol. 100,pp. 149–157. doi: 10.1016/j.polymer.2016.08.015


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика