doi: 10.17586/2226-1494-2018-18-1-140-146


OPTIMIZATION OF DESIGN PARAMETERS FOR DEPTH ELECTROMAGNETIC SPEED SENSOR

Y. L. Avanesov, A. N. Bukanova, A. S. Voronov, M. I. Evstifeev


Read the full article  ';
For citation: Avanesov Y.L., Bukanova A.N., Voronov A.S., Evstifeev M.I. Optimization of design parameters for depth electromagnetic speed sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 140–146 (in Russian). doi: 10.17586/2226-1494-2018-18-1-140-146

Abstract

 Subject of Research.Design features of a deep water electromagnetic speed sensor are considered. The principle of its operation is described; a finite-element model is developed. The design solutions that improve the performance of the induction sensor are shown. The design parameters are optimized by the criterion of strength increase.  Method. The study was performed using the finite element method in the ANSYS Workbench software. The calculations were performed in the Static Structural module with account for the distributed load simulating external hydrostatic pressure. To determine the effect of mechanical stresses on the design parameters a parametric model is used. The parameters in this model are ranged within the prescribed limits. At calculations all materials are taken to be isotropic. Main Results.  Calculating results of induction sensor stress-strain state under the impact of external hydrostatic load were obtained by the method of finite element analysis. The effect of the sensor case material, its thickness and geometry, on the maximum stresses arising in the structure is studied. Recommendations on the choice of design parameters are given for increasing the strength of the induction sensor confirmed by computer simulation. Practical Relevance. The results obtained can be applied in modernization, design and construction of new electromagnetic speed sensors operating at high hydrostatic pressures.


Keywords: electromagnetic speed sensor, electromagnetic log, design optimization, deep water research, strength

References
 1.      Bingham B., Foley B., Singh H. et al. Robotic tools for deep water archaeology: Surveying an ancient shipwreck with an autonomous underwater vehicle. Journal of Field Robotics, 2010, vol. 27, no. 6, pp. 702–717. doi: 10.1002/rob.20350
2.      Ramadass G.A., Ramesh S., Subramanian A.N., Sathianarayanan D., Ramesh R., Harikrishnan G., Pranesh S.B., DossPrakash V., Atmanand M.A. Deep ocean mineral exploration in the Indian Ocean using Remotely Operated Vehicle (ROSUB 6000). Proc. IEEE Underwater Technology. Chennai, India, 2015, art. 7108320. doi: 10.1109/UT.2015.7108320
3.      Khrebtov A.A., Koshkarev V.N., Osyukhin B.A., Vinogradov K.A., Chernyavets V.V. Sudovyye Izmeriteli Skorosti Spravochnik [Ship's Speed Meters – Reference Book]. Leningrad, Sudostroenie Publ., 1978, 288 p. (In Russian)
4.      Chakradhara Rao Ch., Pushpalatha P., Aditya Sundar N. GPS based vehicle navigation system using Google maps. International Journal of Computer Science and Information Technologies, 2013, vol. 4, no. 6, pp. 979–982.
5.      Stepanov O.A. Integrated inertial-satellite navigation systems. Gyroscopy and Navigation, 2002, no. 1, pp. 23–45. (In Russian)
6.      Siergiejczyk M., Krzykowska K., Rosinski A. Parameters analysis of satellite support system in air navigation. Advances in Intelligent Systems and Computing,2015, vol. 1089, pp. 673–678. doi:10.1007/978-3-319-08422-0_95
7.      Leonard J.J., Bahr A. Autonomous underwater vehicle navigation. In Springer Handbook of Ocean Engineering. Springer, 2016, pp. 341–357. doi: 10.1007/978-3-319-16649-0_14
8.      Yang Y.X., Li J.L., Wang A.B. et al. Preliminary assessment of the navigation and positioning performance of BeiDou regional navigation satellite system. Science China Earth Sciences, 2014, vol. 57, no. 1, pp. 144–152. doi: 10.1007/s11430-013-4769-0
9.      Avanesov Y.L., Voronov A.S., Evstifeev M.I. Computer simulation of electromagnetic log sensor strength characteristics.Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 4, pp. 738–744. doi: 10.17586/2226-1494-2016-16-4-738-744
10.   Saranchin A.I., Polkovnikov V.F., Zav'yalov V.V. Inductive Electronic Log IEL-2M. Vladivostok, 2003, 40 p. (In Russian)
11.   Dmitriev S.P., Zinenko V.M., Litvinenko Yu.A. Correction and damping of medium accuracy INS using electromagnetic log. Gyroscopy and Navigation, 2012, vol. 3, no. 4, pp. 270–274. doi: 10.1134/S2075108712040025
12.   Joon L., You-Chol L. Transfer alignment considering measurement time delay and ship body flexure. Journal of Mechanical Science and Technology, 2009, vol. 23, no. 1, pp. 195–203. doi: 10.1007/s12206-008-0821-y
13.   Li Q., Sun F., Yu F., Gao W. The use of adaptive network-based fuzzy inference system for marine AHRS. Gyroscopy and Navigation, 2014, vol. 5, no. 2, pp. 108–112. doi: 10.1134/S2075108714020059
14.   Batovkin V.I., Kochanov V.Yu., Tarachova V.M. Influence of geometric parameters on the performance characteristics of conical deep-sea portholes. Proc. Design, Strength and Reliability of Ships, Marine Technical Equipment and Engineering Structures. Nikolaev, Ukraine, 2014.
Dibir A.G., Makarov O.V., Pekel'nyi N.I., Yudin G.I., Grebennikov M.N. Practical calculations for the durability of structural elements. Part 1. Textbook. Kharkiv, KhAI Publ., 2007, 102 p.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика