DOI: 10.17586/2226-1494-2018-18-1-153-157


APPLICATION OF SCHEME WITH CUSTOMIZABLE DISSIPATIVE PROPERTIES FOR GAS FLOW CALCULATION WITH INTERFACE INSTABILITY EVOLUTION

D. V. Sadin


Read the full article 
For citation: Sadin D.V. Application of scheme with customizable dissipative properties for gas flow calculation with interface instability evolution. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 1, pp. 153–157 (in Russian). doi: 10.17586/2226-1494-2018-18-1-153-157

Abstract

 We have performed testing of the scheme with customizable dissipative properties as applied to problems for complicated gas flow structure with the evolution of interface instability.The scheme is implemented by the splitting into two phases. The first one uses the central differences of both deformation and gradient terms of the Euler equations with artificial viscosity TVD limiters. TVD type reconstructions for convective terms with flux limiters are used in the second phase. A two-order TVD Runge-Kutta algorithm is applied to march the solution in time. We address the issue of numerical resolution and efficiency of the proposed scheme in comparison with some high resolution schemes through numerical examples: the implosion problem, the explosion problem and the double Mach reflection problem. The scheme with customizable dissipative properties in terms of cost (cost of machine time) – quality (resolution) is at the level of modern high order schemes. For some numerical examples, the proposed scheme is superior. The scheme can be recommended for numerical studies of both complex shock wave and vortex flows with the evolution of interface instability.


Keywords: scheme with customizable dissipative properties, gas flow calculation, instability evolution, interface

References
 1.      Cocchi J.P., Saurel R., Loraud J.C. Treatment of interface problems with Godunov-type schemes. Shock Waves, 1996, vol. 5, no. 6, pp. 347–357. doi: 10.1007/pl00003878
2.      Toro E.F. Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin, Springer-Verlag, 2009, 724 p.
3.      Jiang G.-S., Shu C.-W. Efficient implementation of weighted ENO schemes. Journal of Computational Physics, 1996, vol. 126, pp. 202–228. doi: 10.1006/jcph.1996.0130
4.      Shi J., Zhang Y.-T., Shu C.-W. Resolution of high order WENO schemes for complicated flow structures Journal of Computational Physics, 2003, vol. 186, no. 2, pp. 690–696. doi: 10.1016/S0021-9991(03)00094-9
5.      Coralic V., Colonius T. Finite-volume WENO scheme for viscous compressible multicomponent flows. Journal of Computational Physics, 2014, vol. 274, pp. 95–121. doi: 10.1016/j.jcp.2014.06.003
6.      Bulat M.P., Volobuev I.A., Volkov K.N., Pronin V.A. Numerical simulation of regular and Mach reflection of shock wave from the wall. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 5, pp. 920–928. (In Russian) doi: 10.17586/2226-1494-2017-17-5-920-928
7.      Tolstykh A.I. On families of compact fourth- and fifth-order approximations involving the inversion of two-point operators for equations with convective terms. Computational Mathematics and Mathematical Physics, 2010, vol. 50, no. 5, pp. 848–861. doi: 10.1134/S096554251005009X
8.      Shen Y.-Q., Zha G.-C. Generalized finite compact difference scheme for shock/complex flow field interaction. Journal of Computational Physics, 2011, vol. 230, no. 12, pp. 4419–4436. doi: 10.1016/j.jcp.2011.01.039
9.      Mikhailovskaya M.N., Rogov B.V. Monotone compact running schemes for systems of hyperbolic equations. Computational Mathematics and Mathematical Physics, 2012, vol. 52, no. 4, pp. 578–600. doi: 10.1134/S0965542512040124
10.   Christensen R.B. Godunov Methods on a Staggered Mesh - An Improved Artificial Viscosity. Technical Report UCRL-JC-105269, 1990, 11 p.
11.   Shankar S.K., Kawai S., Lele S. Numerical simulation of multicomponent shock accelerated flows and mixing using localized artificial diffusivity method. Proc. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Orlando, USA, 2010, art. 2010-0352.
12.   Kurganov A., Liu Y. New adaptive artificial viscosity method for hyperbolic systems of conservation laws. Journal of Computational Physic, 2012, vol. 231, no. 24, pp. 8114–8132. doi: 10.1016/j.jcp.2012.07.040
13.   Tagirova I. Yu., Rodionov A. V. Application of the artificial viscosity for suppressing the carbuncle phenomenon in Godunov-type schemes. Mathematical Models and Computer Simulations, 2016, vol. 8, no. 3, pp. 249–262. doi: 10.1134/S2070048216030091
14.   Sadin D.V. TVD scheme for stiff problems of wave dynamics of heterogeneous media of nonhyperbolic nonconservative type. Computational Mathematics and Mathematical Physics, 2016, vol. 56, no. 12, pp. 2068–2078. doi: 10.1134/S0965542516120137
15.   Sadin D.V. Schemes with customizable dissipative properties as applied to gas-suspensions flow simulation. Mathematical Models and Computer Simulations, 2017.
16.   Wong M.L., Lele S.K. High-order localized dissipation weighted compact nonlinear scheme for shock- and interface-capturing in compressible flows. Journal of Computational Physics, 2017, vol. 339, no. 15, pp. 179–209. doi: 10.1016/j.jcp.2017.03.008.
17.   Liska R., Wendroff B. Comparison of several difference schemes on 1D and 2D test problems for the Euler equations. SIAM Journal on Scientific Computing, vol. 25, no. 3, pp. 995–1017. doi: 10.1137/S1064827502402120
18.   Gottlieb S., Shu C.-W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 1998, vol. 67, no. 221, pp. 73–85. doi: 10.1090/S0025-5718-98-00913-2
19.   Jiang G.-S., Tadmor E. Nonoscillatory central schemes for multidimensional hyperbolic conservation laws. SIAM Journal on Scientific Computing, 1998, vol. 19, no. 6, pp. 1892–1917. doi: 10.1137/S106482759631041X
20.   Colella P., Woodward P. The piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics, 1984, vol. 54, no. 1, pp. 174–201. doi: 10.1016/0021-9991(84)90143-8
21.   Woodward P., Colella P. The numerical simulation of
two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 1984, vol. 54, no. 1, pp. 115–173. doi: 10.1016/0021-9991(84)90142-6


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика