doi: 10.17586/2226-1494-2018-18-2-169-190


P. V. Bulat, O. P. Minin

Read the full article  ';
Article in Russian

For citation: Bulat P.V., Minin O.P. On modern approach to airplane-type unmanned aerial vehicles design with short takeoff and landing. Part III. Numerical modeling of aircraft vortex aerodynamics by discrete vortex method. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 2, pp. 169–190 (in Russian). doi: 10.17586/2226-1494-2018-18-2-169-190


This publication continues a series of review papers devoted to the urgent problems of designing unmanned aircrafts of the next generation, which are expected to appear in the period from 2025 to 2035. The paper considers simple and effective numerical methods based on the ideas of a vortex lift surface that allow for performing a full parametric analysis of aircrafts with very complex aerodynamic shape of the wing. Calculation examples are given for triangular wing of small and moderate aspect ratio with an acute and rounded leading edge, as well as a wing of complex shape. We consider design methods for deformed aerodynamic surfaces with optimal properties and a method for wing mechanization calculating. The formation of vortices on sharp front edges, the destruction of vortices over the wing surface and diffusion mechanism of vortices are studied. The calculation method for small aspect ratio wings is described. The results obtained are compared with the results of the experiment and numerical verification.

Keywords: national technological initiative, aeronet, unmanned aerial vehicle, vertical take-off and landing, short take-off and landing, aerodynamics, discrete vortex method, slender-delta wing, vortex lift

1.      Bulat P.V., Minin O.P. On modern approach to airplane-type unmanned aerial vehicles design with short takeoff and landing. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2017, vol. 17, no. 6, pp. 961–996 (in Russian). doi: 10.17586/2226-1494-2017-17-6-961-996
2.      Prandtl L. Theorie des Flugzeügtragflugels im zusammendrückbaren Medium. Luftfahrtforschung, 1936, vol. 13, p. 313.
3.      AeroNet. Distributed Systems of Unmanned Aircrafts. Available at: 16.06.2017).
4.      National Technology Initiative. Available at: (accessed 16.06.2017).
5.      Volkov K.N., Emelyanov V.M. Modeling of Large Vortices in Calculations of Turbulent Flows. Moscow, Fizmatlit Publ., 2008, 368 p. (in Russian)
6.      Isaev S.A., Baranov P.A., Kudryavtsev N.A., Lisenko D.A., Usachov A.E. Complex analysis of turbulence models, algorithms, and grid structures at the computation of recirculating flow in a cavity by means of VP2/3 and FLUENT packages. Part. 1. Scheme Factors Influence. Thermophysics and Aeromechanics, 2005, pp. 549–569.
7.      Baranov P.A., Guvernyuk S.V., Isaev S.A., Soudakov A.G., Usachov A.E. Simulation of periodical structures in the airfoil wake. TsAGI Science Journal, 2014, vol. 45, pp. 273–292.
8.      Isaev S.A., Baranov P.A., Zhukova Yu.V., Usachov A.E., Kharchenko V.B. Correction of the shear-stress-transfer model with account of the curvature of streamlines in calculating separated flows of an incompressible viscous fluid. Journal of Engineering Physics and Thermophysics, 2014, vol. 87, no. 4, pp. 1002–1015. doi: 10.1007/s10891-014-1098-x
9.      Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model. In Turbulence, Heat and Mass Transfer. 4th ed. Eds. K. Hajalic, Y.Nogano, M.Tummers. Antalya, Begell House, 2003, pp. 73–86.
10.   Spalart P.R. Strategies for turbulence modeling and simulations. International Journal of Heat and Fluid Flow, 2000, vol. 21, no. 3, pp. 252–263. doi: 10.1016/S0142-727X(00)00007-2
11.   KuüchemannD. The Aerodynamic Design of Aircraft. Pergamon Press, 1978.
12.   Flax A.H., Lawrence H.R. The aerodynamics of low-aspect-ratio wings and wing-body combinations. Proc. 3rd Anglo-American Aeron. Conf., 1951, vol. 363.
13.   Katz J., Plotkin A. Low Speed Aerodynamics. 2nd ed. Cambridge University Press, 2001, 613 p.
14.   Belotserkovskii S.M. Ring-shaped vortex with unsteady movement. Prikladnaya Matematika i Mekhanika, 1955, vol. 19, no. 2. (in Russian)
15.   Golovkin M.A. Method for solving the problem of separated flow of an arbitrarily moving three-dimensional body by ideal incompressible fluid. TsAGI Science Journal, 1977, vol. 8, no. 2, pp. 1–15. (in Russian)
16.   Lifanov I.K. Method of Singular Integral Equations and Numerical Experiment (In Mathematical Physics, Aerodynamics, Theory of Elasticity and Diffraction of Waves). Moscow, Yanus Publ., 1995, 520 p. (in Russian)
17.   Belotserkovskii S.M., Lifanov I.K. Numerical Methods in Singular Integral Equations and their Application to Aerodynamics, Theory of Elasticity, Electrodynamics. Moscow, Nauka Publ., 1985, 256 p. (in Russian)
18.   Vorob'ev N.V., Shishkina G.I. On the question of a discrete vortex scheme of the wing. In Problems of Spatial Configuration Bodies Flow. Novosibirsk, ITPM Publ., 1978. (in Russian)
19.   Margason R.J., Kjelgaard S.O., Sellers W.L., Morris C.E.K., Walkey K.B., Shields E.W. Subsonic panel methods - a comparison of several production codes. Proc. AIAA 23rd Aerospace Sciences Meeting. Reno, USA, 1985.
20.   Abbott I.H., von Doenhoff A.E. Theory of Wing Sections. New York, McGraw-Hill Book Company, 1949.
21.   Bangasser C.T. An Investigation of Ground Effect on Airfoils Using a Panel Method. Masters Thesis. University of Tennessee, 1993.
22.   Abramovich G.N. Applied Gas Dynamics. Moscow, Nauka Publ., 1976. (in Russian)
23.   Drela M. Flight Vehicle Aerodynamics. Cambridge, MIT Press, 2014, 279 p.
24.   Falkner V.M. The solution of lifting-plane problems by vortex-lattice theory. ARC Report and Memoranda, 1953, no. 2591.
25.   Golovkin M.A. Method for calculating the flow around an object by an arbitrary (vortex nonstationary) flow of an ideal incompressible fluid. TsAGI Science Journal, 1986, vol. 17, no. 6, pp. 10–15. (in Russian)
26.   Belotserkovskii S.N., Nisht M.I. Continuous and Non-Continuous Flow of Thin Wings by an Ideal Liquid. Moscow, Nauka Publ., 1978, 352 p. (in Russian)
27.   Aubakirov T.O., Belotserkovskii S.M., Zhelannikov A.I., Nisht M.I. Nonlinear Wing Theory and Its Applications. Almaty, Galym Publ., 1977, 448 p. (in Russian)
28.   Golovkin M.A., Golovkin V.A., Kalyavkin V.M. Vortex Fluid Mechanics. Moscow, Fizmatlit Publ., 2009, 264 p. (in Russian)
29.   Belotserkovskii S.M., Kotovskii V.N., Nisht M.I., Fedorov R.M. Mathematical Modeling of Plane-Parallel Separated Flow around Bodies. Moscow, Nauka Publ., 1988, 232 p. (in Russian)
30.   Belotserkovskii S.M., Skripach B.K., Tabachnikov V.G. Wing in a Nonstationary Gas Flow. Moscow, Nauka Publ., 1971, 768 p. (in Russian)
31.   Bartlett G.E., Vidal R.J. Experimental investigations of influence of edge shape on the aerodynamic characteristics of low aspect ratio wings at low speeds. Journal of the Aeronautical Sciences, 1955, vol. 22, no. 8, pp. 517–533. doi: 10.2514/8.3391
32.   Schlichting H, Truckenbrodt E. Aerodynamik des Flugzeuges. Berlin, Springer-Verlag, 1969.
33.   Sivells J.C. Experimental and calculated characteristics of three wings of NACA 64-210 and 65-210 airfoil sections with and without washout. NASA Technical Note 1422, 1947.
34.   Flax A.H. Reverce flow and variational theorems for lifting-surface in nonstationary compressible flow. Journal of the Aeronautical Sciences, 1953, vol. 20, no. 2, pp. 120–126. doi: 10.2514/8.2553 
35.   Belotserkovskii S.M. Thin Supporting Surface in Subsonic Gas Flow. Moscow, Nauka Publ., 1965, 244 p. (in Russian)
36.   Hansen M. Messungen an Krietrgflachen. Luftfahrtforschung, 1939.
37.   Polhamus E.C. Application of the leading-edge-suction analogy of vortex lift to the drag due to lift of sharp-edge delta wings. NASA Technical Note D-4739 (N68-21990), 1968.
38.   Polhamus E.C. A concept for the vortex lift of sharp-edge delta wings based on a leading edge suction analogy. NASA Technical Note D-3767 (N67-13171), 1966.
39.   Byushgens G.S. Aerodynamics, Stability and Controllability of Supersonic Aircraft. Moscow, Fizmatlit Publ., 1998, 793 p. (in Russian)
40.   Henderson W.P. Studies of various factors affecting drag due to lift at subsonic speed. NASA Technical Note X, ND-3584, 1966.
41.   Chu J., Luckring J.M. Experimental surface pressure data obtained onA65"delta wing across Reynolds number and Mach number ranges. NASA Technical Memorandum 4645, 1996, vol. 3, 63 p.
42.   Saltzman E.J., Wang K.C., Iliff K.W. Aerodynamic assessment of flight- determined subsonic lift and drag characteristics of seven lifting-body and wing-body reentry vehicle configurations. NASA/TP-2002-209032, 2002.
43.   Vorob'ev N.F. Aerodynamics of Load-Bearing Surfaces in a Steady Flow. Novosibirsk, Nauka Publ., 1985, 239 p. (in Russian)
44.   Belotserkovskii S.N., Ginevskii A.S. Simulation of Turbulent Jets and Traces based on Discrete Vortices Method. Moscow, Fizmatlit Publ., 1995, 368 p.
45.   Clapworthy G.J., Mangler K.W. The behavior of a conical vortex sheet on a slender wing near the leading edge. ARC-RM-3790, 1977.
46.   Erickson G.E. Water tunnel flow visualization insight into complex three dimensional flow fields. Journal of Aircraft, 1980, vol. 17, no. 9, pp. 656–662. doi: 10.2514/3.57952
47.   Zhuk A.N., Kur'yanov A.I., Stolyarov G.I. Hysteresis of the normal force of a complex shape wing in the plan with unsteady motion. TsAGI Science Journal, 1981, vol. 12, no. 5, pp. 113–118. (in Russian)
48.   Egon K. Many-faced Vortexes. Nauka iz Pervykh Ruk, 2006, vol. 12, no. 6. Available at: (accessed16.12.2017).
Chang P.K. Separation of Flow. Pergamon Press, 1970, vol. 1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2023 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.