doi: 10.17586/2226-1494-2018-18-2-191-196


LOCALIZED LASER VAPORIZATION OF FILMS WITH COMPLEX TOPOLOGIES FOR SURFACE ACOUSTIC WAVE MICROGYROSCOPE SENSOR

D. V. Safronov, P. D. Popov


Read the full article  ';
Article in Russian

For citation: Safronov D.V., Popov P.D. Localized laser vaporization of films with complex topologies for surface acoustic wave microgyroscope sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, , 2018, vol. 18, no. 2, pp. 191–196 (in Russian). doi: 10.17586/2226-1494-2018-18-2-191-196

Abstract

We have developed a method for localized laser vaporization of a sensitive element film for a solid microgyroscope based on surface acoustic waves. A double-conversion scheme was chosen as a microgyroscope sensitive element configuration. It was shown that at least three technological operations are excluded at laser vaporization as compared with photolithography method. Research results on the formation of topologies with the usage of laser processing are presented. We have determined the parameters of laser processing for sensor topology configuring by means of thin-film coating evaporation with a thickness of 400 nm, which comprises 350 nm of aluminum and 50 nm of vanadium adhesive coating applied on a substrate made of quartz. The amplitude-frequency characteristic of the manufactured sample is obtained. It is revealed that the experimental sample has a high loss value caused by inaccuracies in its manufacturing technology. Recommendations were worked out for minimization of error sources in the manufacturing technology of microgyroscope sensitive element on surface acoustic waves with the use of the laser configuration method.


Keywords: solid-state microgyroscope, surface acoustic wave, laser, topology, delay line

References
 
  1. Loukianov D.P., Tikhonov A.A., Filatov Yu.V., Povalyaev A.G., Shevchenko S.Yu. et al. The development and optimization of a SAW-microaccelerometer structure. Part 1. Giroskopiya i Navigatsiya, 2005, no. 2, pp. 79–94. (In Russian)
  2. Lao B.Y. Gyroscopic effect in surface acoustic waves. Proc. IEEE Ultrasonics Symposium. Boston, 1980, vol. 2, pp. 687–691.
  3. Kurosawa M., Fukuda Y., Takasaki M. Highuchi T. A surface acoustic wave gyro sensor. Proc. Int. Solid State Sensors and Actuators Conference. Chicago, 1997, pp. 863–866. doi: 10.1109/sensor.1997.635238
  4. Varadan V.K., Suh W.D., Xavier P.B., Jose K.A., Varadan V.V. Design and development of a MEMS-IDT gyroscope. Smart Materials and Structures, 2000, vol. 9, no. 6, pp. 898–905. doi: 10.1088/0964-1726/9/6/322
  5. Woods R.C., Kalami H., Johnson B. Evaluation of a novel surface acoustic wave gyroscope. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 2002, vol. 49, no. 1, pp. 136–141. doi: 10.1109/58.981391
  6. Lee S.W., Rhim J.W., Park S.W., Yang S.S. A micro rate gyroscope based on the SAW gyroscopic effect. Journal of Micromechanics and Microengineering, 2007, vol. 17, no. 11, pp. 2272–2279. doi: 10.1088/0960-1317/17/11/014
  7. Lee S.W., Rhim J.W., Park S.W., Yang S.S. A novel micro rate sensor using a surface-acoustic-wave (SAW) delay-line oscillator. Proc. of IEEE Sensors. Atlanta, USA, 2007, pp. 1156–1159. doi: 10.1109/ICSENS.2007.4388612
  8. Wang W., Oh H., Lee K., Yoon S., Yang S. Enhanced sensitivity of novel surface acoustic wave microelectromechanical system-interdigital transducer gyroscope. Japanese Journal of Applied Physics, 2009, vol. 48, no. 6, pp. 06FK091-06FK098. doi: 10.1143/JJAP.48.06FK09
  9. Wang W., He S., Li H. Theoretical sensitivity evaluation of a shear-horizontal SAW based micro rate sensor. Proc. IEEE Ultrasonics Symposium. Rome, Italy, 2009, pp. 1684–1687. doi: 10.1109/ULTSYM.2009.5441914
  10. Wang W., Xu F., He S., Li S., Lee K. A new micro-rate sensor based on shear horizontal surface acoustic wave gyroscopic effect. Japanese Journal of Applied Physics, 2010, vol. 49, no. 9. doi: 10.1143/JJAP.49.096602
  11. Oh H., Wang W., Yang S., Lee K. Development of SAW based gyroscope with high shock and thermal stability. Sensors and Actuators A: Physical, 2011, vol. 165, no. 1, pp. 8–15. doi: 10.1016/j.sna.2010.02.013
  12. Oh H., Lee K., Yang S., Wang W. Enhanced sensitivity of a surface acoustic wave gyroscope using a progressive wave. Journal of Micromechanics and Microengineering, 2011, vol. 21, no. 7, art. 075015. doi: 10.1088/0960-1317/21/7/075015
  13. Wang W., Liu J., Xie X., Liu M., He S. Development of a new surface acoustic wave based gyroscope on a X-112°Y LiTaO3 substrate. Sensors, 2011, vol. 11, no. 11, pp. 10894–10906. doi: 10.3390/s111110894
  14. LukyanovD.P., FilatovYu.V., ShevchenkoS.Yu. etal. State of the art and prospects for the development of SAW-based solid-state gyros. Gyroscopy and Navigation, 2011, vol. 2, no. 4, pp. 214–221. doi: 10.1134/S2075108711040109
  15. Volkov S.Yu. New Laser Technology GF AgieCharmilles. Available at: http://galika.ru/news/novaya-lazernaya-tehnologiya-gf-agiesharmilles (accessed 25.01.2018).
  16. Veiko V.P. Laser Processing of Film Elements. Leningrad, Mashinostroenie Publ., 1986, 260 p. (In Russian)


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика