doi: 10.17586/2226-1494-2018-18-2-220-227


SEMICONDUCTOR FREQUENCY STANDARD BASED ON P(16) SPECTRAL LINE OF ACETYLENE ISOTOPE WITH TEMPERATURE STABILIZATION BY PHASE MODULATION

A. B. Danichev, D. A. Shelestov, A. B. Pnev


Read the full article  ';
Article in Russian

For citation: Danichev A.B., Shelestov D.A., Pnev A.B. Semiconductor frequency standard based on p(16) spectral line of acetylene isotope with temperature stabilization by phase modulation. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 2, pp. 220–227 (in Russian). doi: 10.17586/2226-1494-2018-18-2-220-227

Abstract

This paper reviews the method of semiconductor laser diode frequency stabilization by phase modulation. Also parameters are identified that affect the quality of stabilization and the estimation of Allan deviation is obtained. The pilot setup has been put together and it consists of: a semiconductor distributed feedback laser diode, a fiber phase modulator, an electrical signal generator, an acetylene-13 isotope cuvette, a photodetector, a lock-in amplifier and personal computer for measurement processing. Modulated laser diode radiation passed through a gas cell provides information about the position of radiation spectral line relative to the center of gas spectral line. Gas molecular spectral lines provide frequency standard with low sensitivity to external effects. When using the reference signal, one can get an error signal in a lock-in amplifier that changes the laser diode temperature and, as a result, its wavelength. Allan deviation was estimated based on measured frequency data. Long-term stability can be improved in the time range between 0.1 s and 100 s up to 1∙10-8 (Allan deviation). This method of stabilization is useful for the development of compact high reliable optical frequency standards for space applications.


Keywords: phase modulation method, laser diode frequency stabilization, semiconductor laser diode, phase modulation, gas absorption line

References
 
  1. Edwards C.S., Margolis H.S., Barwood G.P. et al. High-accuracy frequency atlas of 13C2H2 in the 1.5 μm region. Applied Physics B: Lasers and Optics, 2005, vol. 80, no. 8, pp. 977–983. doi: 10.1007/s00340-005-1851-0
  2. Felder R. Practical realization of the definition of the metre, including recommended radiations of other optical frequency standards (2003). Metrologia, 2005, vol. 42, no. 4, pp. 323–325. doi: 10.1088/0026-1394/42/4/018
  3. Svelto C. et al. 194 369 569.4(5) MHz optical frequency standard based on 13C2H2 p(16) saturated line. Proc. 19th IEEE Instrumentation and Measurement Technology Conference. Anchorage, USA, 2002, vol. 1, pp. 69–72.
  4. Edwards C.S., Patel P., Barwood G.P., Gill P. Development of a compact 1.54 μm acetylene standard at NPL. Proc. Conference on Precision Electromagnetic Measurements Digest. Broomfield, USA, 2008, pp. 294–295. doi: 10.1109/CPEM.2008.4574769
  5. Nakagawa K., Sato Y., Musha M., Ueda K. Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy. Applied Physics B: Lasers and Optics, 2005, vol. 80, no. 4-5, pp. 479–482.
  6. Ahtee V., Merimaa M., Nyholm K. Fiber-based acetylene-stabilized laser. IEEE Transactions on Instrumentation and Measurement, 2009, vol. 58, no. 4, pp. 1211–1216. doi: 10.1109/TIM.2008.2008476
  7. Moon H.S., Lee W.K., Suh H.S. Absolute-frequency measurement of an acetylene-stabilized laser locked to the P(16) transition of 13C2H2 using an optical-frequency comb. IEEE Transactions on Instrumentation and Measurement, 2007, vol. 56, no. 2, pp. 509–512. doi: 10.1109/TIM.2007.891056
  8. Latrasse C., Pelletier F., Doyle A., Savard S., Babin A. et al. High performances frequency-stabilized semiconductor laser metrology sources for space-borne spectrometers. Proceedings of SPIE, 2006, vol. 10567. doi: 10.1117/12.2308112
  9. Balling P., Fischer M., Kubina P., Holzwarth R. Absolute frequency measurement of wavelength standard at 1542nm: acetylene stabilized DFB laser. Optics Express, 2005, vol. 13, no. 23, pp. 9196–9201. doi: 10.1364/OPEX.13.009196
  10. Triches M., Michieletto M., Hald J., Lyngso J.K., Lægsgaard J., Bang O. Optical frequency standard using acetylene-filled hollow-core photonic crystal fibers. Optics Express, 2015, vol. 23, no. 9, pp. 11227–11241. doi: 10.1364/OE.23.011227
  11. Liang W., Ilchenko V.S., Eliahu D. et al. Ultralow noise miniature external cavity semiconductor laser. Nature Communications, 2015, vol. 6, art. 7371. doi: 10.1038/ncomms8371
  12. Shelestov D.A., Dolonov I.A., Koshelev K.I., Pnev A.B. Keeper of frequency on the line P(16) 13C2H2 for space applications. Proc. 5th All-Russian Conf. on Photonics and Information Optics. Moscow, MEPhI, 2016, pp. 69–70. (In Russian)
  13. Schuldt T., Doringshoff K., Milke A. et al. High-performance optical frequency references for space. Journal of Physics: Conference Series, 2017, vol. 723, no. 1, art. 012047. doi: 10.1088/1742-6596/723/1/012047
  14. Philippe C., Holleville D., Le Targat R., Wolf P., Leveque T., Goff R.Le, Martaud E., Acef O. A compact frequency stabilized telecom laser diode for space applications. Proceedings of SPIE, 2017, vol. 10562. doi: 10.1117/12.2296121
  15. Philippe C., Le Targat R., Holleville D. et al. Frequency tripled 1.5 µm telecom laser diode stabilized to iodine hyperfine line in the 10−15 range. Proc. 2016 European Frequency and Time Forum. York, UK, 2016. doi: 10.1109/EFTF.2016.7477827
  16. Bjorklund C.C., Levenson M.D., Lenth W., Ortiz C. Frequency modulation (FM) spectroscopy - Theory of lineshapes and signal-to-noise analysis. Applied Physics B Photophysics and Laser Chemistry, 1983, vol. 32, no. 3, pp. 145–152. doi: 10.1007/BF00688820
  17. Drever R.W.P., Hall J.L., Kowalski F.V. et al. Laser phase and frequency stabilization using an optical resonator. Applied Physics B Photophysics and Laser Chemistry, 1983, vol. 31, no. 2, pp. 97–105.
  18. Shelestov D., Tomilov S. Stabilization of wavelength of diode laser radiation. Dynamic characteristics of Peltier elements. Photonics, 2016, no. 4, pp. 52–63. (In Russian) doi: 10.22184/1993-7296.2016.58.4.52.63


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2021 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика