doi: 10.17586/2226-1494-2018-18-3-356-362


DEPENDENCE OF SPECTRAL CHARACTERISTICS OF SEMICONDUCTOR AND SOLID STATE LASERS OF VISIBLE RANGE ON ACTIVE ENVIRONMENT TEMPERATURE

A. A. Adamov, M. S. Baranov, V. N. Khramov


Read the full article  ';
Article in Russian

For citation: Adamov A.A., Baranov M.S., Khramov V.N. Dependence of spectral characteristics of semiconductor and solid state lasers of visible range on active environment temperature. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 3, pp. 356–362 (in Russian). doi: 10.17586/2226-1494-2018-18-3-356-362

Abstract

We consider research results on the effect of the active medium temperature, which varies with the operation of semiconductor and solid-state (DPSS) lasers of the visible range, on the output spectral characteristics. The paper presents the study results of the spectral-optical radiation parameters of semiconductor lasers, their coherence lengths, and the dependence of the spectral maximum position on temperature. This study is necessary for selection of the most optimal laser, which in the future is planned to be used in medical ophthalmologic diagnostics. The experiment was carried out by solid-state (DPSS) and semiconductor laser modules based on a laser diode. Spectral dependences on the active medium temperature of lasers were obtained, ranging from 300 to 370 K. The spectra were recorded with the use of an automated spectral complex based on the MDR-23 monochromator. We show determination possibility of the internal stabilization damage of laser modules  without mechanical intervention but only by applying their spectral characteristics. The obtained data give the possibility to take into account the temperature characteristics and perform further optimization for parameters of such lasers


Keywords: semiconductor laser, spectral characteristics, spectral peak, temperature dependence, coherence length

Acknowledgements. This work was partially supported by the grant UMNIK 17-12 (b), Volgograd Region-2017.

References
1.      Qian Y., Cheng X, Zhang L. Applied research of semiconductor laser on laser encoding and emitting system. Proceedings of SPIE, 2008, vol. 6824. doi: 10.1117/12.755934
2.      Baranov M.S., Khramov V.N., Lotin A.A., Khaydukov E.V. Fabrication, size control and functionalization of silver nanoparticles by pulsed laser ablation synthesis in liquid. Proceedings of SPIE, 2017, vol. 10336. doi: 10.1117/12.2267927
3.      Baranov M.S., Khramov V.N., Chebanenko R.A The polarization-optical measuring method of linearity of radiant-power characteristic of the laser emission photodetectors. Proceedings of SPIE, 2016, vol. 9917. doi: 10.1117/12.2229841
4.      Baranov M.S., Bardina A.A., Savelyev A.G., Khramov V.N.,  Khaydukov E.V. Laser ablation synthesis and spectral characterization of ruby nanoparticles. Proceedings of SPIE, 2016, vol. 9917. doi: 10.1117/12.2229755
5.      Baranov M.S., Khramov V.N. The regenerative and super-regenerative amplifications of the ultrashort laser pulses. ProceedingsofSPIE,2016,vol. 10337. doi: 10.1117/12.2267891
6.      Serebryakov V.A. Summary of Lectures on the Course Laser Technologies in Medicine. St. Petersburg, SPbSU ITMO, 2009, 266 p. (in Russian)
7.      Punke M., Woggon T., Stroisch M., Ebenhoch B., Geyer U., Karnutsch C., Gerken M., Lemmer U., Bruendel M., Wang J., Weimann T. Organic semiconductor lasers as integrated light sources for optical sensor systems. ProceedingsofSPIE,2007,vol. 6659. doi: 10.1117/12.733165
8.      Balashevich L.I., Izmailov A.S., Kachanov A.B. Semiconductor lasers in ophthalmology. In Problems of Laser Ophthalmology. Ed. A.V. Bol'shunov. Moscow, Aprel Publ., 2013, pp. 202–219.
9.      Adamov A.A., Kharamov V.N. Evaluation of the possibility of applying the method of the laser triangulation to measurement of thin film thickness. Mathematical Physics and Computer Simulation, 2017, vol. 20, no. 4, pp. 83–94. doi: 10.15688/mpcm.jvolsu.2017.4.8
10.   Adamov A.A. Application of the method of laser triangulation for measuring thickness thin biological tissue. Proceedings of Science Session. Volgograd, Russia, 2017, pp. 454–459. (in Russian)
11.   Adamov A.A., Khramov V.N. Modification of the laser triangulation method for measuring the thickness of optical layers. Available at: http://sfm.eventry.org/report/2655 (accessed: 22.11.2017).
12.   Adamov A.A., Baranov M.S., V.N. Khramov, Abdrakhmanov V.L., Golubev A.V., Chechetkin I.A. Increasing the resolution of light marks when measuring the thickness of the corneal layer of the eye in the method of laser triangulation. Proc. 7th Int. Conf. on Photonics and Information Optics. Moscow, 2018, pp. 542–543. (in Russian)
13.   Baranov M.S. Modernization of the registration system for an automated two-channel spectral complex based on MDR-23. Proceedings of Science Session. Volgograd, Russia, 2014, part 1, pp. 380–383. (in Russian)
14.   Khramov V.N., Marusin N.V. Program for managing a two-channel automated spectral complex based on MDR-23. Certificate of Computer Program Registration RU 2013614750, 2013.
15.   Armstrong J.A., Smith A.W Intensity fluctuations in GaAs laser. Physical Review Letters, 1965, vol. 14, pp. 68–70. doi: 10.1103/PhysRevLett.14.68
16.   Volkov V.G. Solid-state lasers with high-power laser diodes pumping used in security systems. Systems of Control, Communication and Security, 2016, no. 2, pp. 142–181. (in Russian)
17.   AbramovD.V., Gerke M.N. Laser Semiconductor Pumping Systems. Vladimir, VlSU Publ., 2015, 100 p. (in Russian)
18.   Pakhalov V.B. Near-threshold spectral modes and coherence of a semiconductor laser and a diode-pumped neodymium laser. Technical Physics Letters, 2010, vol. 36, no. 4,
pp. 354–357. doi: 10.1134/S106378501004019X
19.   Ryabukho V.P., Lyakin D.V., Lychagov V.V. Longitudinal coherence of optical field. Izvestiya Vuzov. PND, 2009, no. 5, pp. 30–42. (in Russian)
20.   Ryabukho V.P. Interference Method for Measuring the Thickness of Transparent Layers and Coatings. Saratov, SSU Publ., 2008. 20 p. URL: http://optics.sgu.ru/_media/library/education/liit.pdf (in Russian)
21.   Gorbatenko B.B., Klimenko I.S., Ryabukho V.P., Feduleev B.V. Interferometer for Measuring the Spatial Coherence of Optical Radiation. Patent RU1450551.
Spectral Transmission Characteristics of Color Glass Filters. Available at: http://www.elektrosteklo.ru/Color_Glass_Spectral_Transmittance.pdf (accessed 25.03.18).


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика