DOI: 10.17586/2226-1494-2018-18-3-535-542


MATHEMATICAL MODEL OF RESONATOR CHAINS IN EXTERNAL MAGNETIC FIELD

A. S. Melikhova


Read the full article 
Article in Russian

For citation: Melikhova A.S. Mathematical model of resonator chains in external magnetic field. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 3, pp. 535–542 (in Russian). doi: 10.17586/2226-1494-2018-18-3-535-542

Abstract

 Subject of Research.The paper considers a spectral problem for chains of weakly coupled ball-shaped resonators under the action of an external magnetic field. Two basic geometries are studied composed of identical resonators: the chain with a single kink and the one with symmetric branching. The vector of magnetic field induction is assumed to be perpendicular to the plane including the centers of resonators that are forming the chain. The delta-like potentials with the same intensity are applied to all contact points. Method. The mathematical model of the chain consisting of identical resonators interacting with each other via a single point is constructed in the framework of the theory of self-adjoint extensions of symmetric operators. The modification of Neumann formulas was used for adjoint operator description. Both systems have a periodicity in parts and the model itself is constructed in such way that it becomes possible to use the transfer matrix approach to obtain the spectrum of the model Hamiltonian. Main Results. The structure of the spectrum for both chains is analytically described; namely, all equations and inequalities are obtained, which give the possibility to find the bands of the continuous spectrum, as well as the energy values ​​related to the discrete spectrum. Numerical simulation clearly demonstrates the structure of the continuous spectrum of the systems depending on the model parameters. Practical Relevance. Since the model has different variable parameters, it can be used to construct real systems that have certain spectral properties. The geometries considered in this paper are the basic elements for the construction of more complex systems.


Keywords: magnetic field, spectrum, self-adjointness, transfer matrix, chain of resonators

Acknowledgements. The work was partially financially supported by grant 16-11-10330 of Russian Science Foundation

References
 
  1. Wang Y., Zhang H.J., Lu L., Stubbs L.P., Wong C.C., Lin J. Designed functional systems from peapod-like co@carbon to Co3O4@carbon nanocomposites. ACS Nano, 2010, vol. 4, no. 8, pp. 4753–4761. doi: 10.1021/nn1004183
  2. Yang Y., Li L., Li W. Plasmon absorption of Au-in-CoAl2O4 linear nanopeapod chains. Journal of Physical Chemistry C, 2013, vol. 117, no. 27, pp. 14142–14148. doi: 10.1021/jp403150h
  3. Duclos P., Exner P., Turek O. On the spectrum of a bent chain graph. Journal of Physics A: Mathematical and Theoretical, 2008, vol. 41, no. 41, art. 415206. doi: 10.1088/1751-8113/41/41/415206
  4. Popov I.Yu., Smirnov P.S. Spectral problem for branching chain quantum graph. Physics Letters A, 2013, vol. 377, no. 6, pp. 439–442. doi: 10.1016/j.physleta.2012.12.021
  5. Popov I.Y., Skorynina A.N., Blinova I.V. On the existence of point spectrum for branching strips quantum graph. Journal of Mathematical Physics, 1992, vol. 55, no. 3, pp. 3794–3801. doi: 10.1063/1.4867604
  6. Exner P., Lipovsky J. Non-Weyl resonance asymptotics for quantum graphs in a magnetic field. Physics Letters A, 2011, vol. 375, no. 4, pp. 805–807. doi: 10.1016/j.physleta.2010.12.042
  7. Blinova I.V., Melikhova A.S., Popov I.Yu. Periodic chain of resonators: gap control and geometry of the system. Journal of Physics: Conference Series, 2016, vol. 735, no. 1, art. 012062. doi: 10.1088/1742-6596/735/1/012062
  8. Eremin D.A., Ivanov D., Popov I.Y. Model of tunneling through nanosphere in a magnetic field. Physica E: Low-dimensional Systems and Nanostructures, 2012, vol. 44,
     no. 7–8, pp. 1598–1601. doi: 10.1016/j.physe.2012.04.002
  9. Melikhova A.S., Popov I.Y. Bent and branched chains of nanoresonators. Journal of Physics: Conference Series, 2014, vol. 541, no. 1, art. 012061. doi: 10.1088/1742-6596/541/1/012061
  10. Melikhova A.S., Popov I.Y. Spectral problem for solvable model of bent nano peapod. Applicable Analysis, 2017, vol. 96, no. 2, pp. 215–224. doi: 10.1080/00036811.2015.1120289
  11. Melikhova A.S. Zigzag chain model and its spectrum. Nanosystems: Physics, Chemistry, Mathematics, 2017, vol. 8, no. 2, pp. 188–193. doi: 10.17586/2220-8054-2017-8-2-188-193
  12. Pavlov B.S. The theory of extensions and explicitly-solvable models. Russian MathimaticalSurveys, 1987, vol. 42, no. 6, pp. 127–168.doi: 10.1070/RM1987v042n06ABEH001491
  13. Popov I.Y., Kurasov P.A., Naboko S.N. et al. A distinguished mathematical physicist Boris S. Pavlov. Nanosystems: Physics, Chemistry, Mathematics, 2016, vol. 7, no. 5,
     pp. 782–788. doi: 10.17586/2220-8054-2016-7-5-782-788
  14. Popov I.Yu. The resonator with narrow slit and the model based on the operator extensions theory. Journal of Mathematical Physics, 1992, vol. 33, no. 11, pp. 3794–3801.
  15. Popov I.Yu., Popova S.L. Zero-width slit model and resonances in mesoscopic systems. Europhysics Letters, 1993, vol. 24, no. 5, pp. 373–377. doi: 10.1209/0295-5075/24/5/009
  16. Albeverio S., Gestesy F., Hoegh-Krohn R. et al. Solvable Models in Quantum Mechanics. Springer-Verlag, 1988.
  17. Bagmutov A.S., Popov I.Yu. Current-voltage characteristics for two systems of quantum waveguides with connected quantum resonators. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2016, vol. 16, no. 4, pp. 725–730. doi: 10.17586/2226-1494-2016-16-4-725-730
  18. Ashkroft N., Mermin N. Solid State Physics, vol. 1. Moscow, Mir Publ., 1979, 458 p. (in Russian)
  19. Sanchez-Soto L.L., Monzon J.J., Barriuso A.J., Carinena J.F. The transfer matrix: A geometrical perspective. Physics Reports, 2012, vol. 513, no. 4, pp. 191–227. doi: 10.1016/j.physrep.2011.10.002


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика