doi: 10.17586/2226-1494-2018-18-4-704-707


N. A. Vunder, N. A. Dudarenko

Read the full article  ';
Article in Russian

For citation: Vunder N.A., Dudarenko N.A. Robustness estimation of free motion deviations of aperiodic systems with sensitivity theory methods. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 4, pp. 704–707 (in Russian). doi: 10.17586/2226-1494-2018-18-4-704-707


Subject of Research.The paper deals with robustness estimation of free motion deviations in aperiodic continuous systemsto parameter variations of the state matrix. Methods. The problem is solved with the state space approach and the sensitivity theory methods. Main Results. An upper bound estimation of trajectory deviations for aperiodic continuous systems is obtained. The equations contain the condition number of the eigenvectors matrix, that is the basis value for the robustness estimation of the deviations with the sensitivity theory methods. Practical Relevance. The results can be used for analysis of uncertain aperiodic continuous systems.

Keywords: deviations, free motion, robustness, sensitivity theory, condition number

Acknowledgements. This work was financially supported by the Government of the Russian Federation (Grant 08-08); the Ministry of Education and Science of the Russian Federation, Project 14.Z50.31.0031, and by RFBR according to the research project No.16-08-00997.

 1.     Vunder N.A., Ushakov A.V. Peaks emergence conditions in free movement trajectories of linear stable systems. Proc. 13th Int. Conf. on Informatics in Control, Automation and Robotics, 2016, vol. 1, pp. 535–538. doi: 10.5220/0005984605350538
2.     Fel'dbaum A.A. On the distribution of the roots of the characteristic equation of a control system. Avtomatika i Telemekhanika, 1948, no. 4, pp. 253–279. (in Russian)
3.     Whidborne J., McKernan J. On the minimization of maximum transient energy growth. IEEE Transactions on Automatic Control, 2007, vol. 52, no. 9, pp. 1762–1767. doi: 10.1109/TAC.2007.900854
4.     Polyak B.T., Smirnov G. Large deviations for non-zero initial conditions in linear systems. Automatica, 2016, vol. 74, pp. 297–307. doi: 10.1016/j.automatica.2016.07.047
5.     Nikiforov V.O., Slita O.V., Ushakov A.V. Intellectual Control under Uncertainty. St. Petersburg, SPbSU ITMO Publ., 2011, 231 p. (in Russian)
6.     Perkins W.R., Cruz J.B., Gonzales R.L. Design of minimum sensitivity systems. IEEE Transactions on Automatic Control, 1968, vol. 13, no. 2, pp. 159–167. doi: 10.1109/tac.1968.1098853
7.     Cacuci D.G., Fang R. Sensitivity and uncertainty analysis of counter-flow mechanical draft cooling towers - I: Adjoint sensitivity analysis. Nuclear Technology, 2017, vol. 198, no. 2, pp. 85–131. doi: 10.1080/00295450.2017.1294429
8.     Gantmakher F.R. Matrix Theory. Moscow, Fizmatlit Publ., 2010, 560 p.
9.     Golub G.H., Van Loan C.F. Matrix Computations. Baltimore, Johns Hopkins University Press, 1996, 728 p.
10. Wilkinson J.H. The Algebraic Eigenvalue Problem. Oxford, Clarendon Press, 1965, 662 p.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2022 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.