DOI: : 10.17586/2226-1494-2018-18-5-727-734


RESEARCH OF HUMAN BLOOD OPTICAL PROPERTIES WITH CONCENTRATION CHANGES OF BLOOD COMPONENTS IN TERAHERTZ FREQUENCY RANGE

Tianmiao Zhang, Y. A. Kononova, M. K. Khodzitskiy, P. S. Demchenko, S. I. Gusev, A. Y. Babenko, E. N. Grineva


Read the full article 
Article in Russian

For citation: Tianmiao Zhang, Kononova Yu.A., Khodzitsky M.K., Demchenko P.S., Gusev S.I., Babenko A.Yu., Grineva E.N. Research of human blood optical properties with concentration changes of blood components in terahertz frequency range. Scientific and Technical Journal of Information Technologies, Mechanics and Optics ,2018, vol. 18, no. 5, pp. 727–734 (in Russian). doi: 10.17586/2226-1494-2018-18-5-727-734

Abstract

Subject of Research.The paper presents the study of blood biochemical composition (bilirubin, creatinine, triglycerides, uric acid) effect on its optical properties, refractive index and absorption coefficient, in terahertz frequency range. Method. To obtain the values of the refractive index and the absorption coefficient, the method of terahertz time-domain spectroscopy was used in the transmission mode. Concentrations of total bilirubin, creatinine and triglycerides were measured in blood serum by the colorimetric method, the pseudokinetic method and the enzymatic method, respectively. The glucose level was determined in blood plasma by the enzyme method. All measurements of blood component concentrations were carried out at the Almazov National Medical Research Centre. Main Results. The optical properties of blood with various biochemical composition were obtained using terahertz time-domain spectroscopy at the frequency of 0.4THz. It is shown that the refractive indices and the absorption coefficients of blood decrease with an increase in the concentration of bilirubin and creatinine. It has also been found that with an increase in the concentration of uric acid and triglycerides, the refractive index of blood increases and the absorption coefficient of blood decreases, respectively. The correlation between the refractive index and the concentration of triglycerides and the correlation between the blood absorption coefficient and the concentration of uric acid were not revealed. Practical Relevance. The observed correlations between the concentrations of blood components and the optical properties are useful in the development of a new technique for blood analysis.


Keywords: terahertz time-domain spectroscopy, optical properties, blood, bilirubin, creatinine, uric acid, triglycerides

References

 

  1. Endocrinology. National Guidance. Eds. I.I. Dedov, G.A. Mel'nichenko. Moscow, GEOTAR-MediaPubl., 2011,752 p.(in Russian)
  2. Gromnatskii N.I. Internal Diseases. Moscow, Med. Inform. Agentstvo Publ., 2009, 688 p. (in Russian)
  3. Fox L.A., Beck R.W., Xing D. et al. Variation of interstitial glucose measurements assessed by continuous glucose monitors in healthy, nondiabetic individuals. DiabetesCare,2010,vol. 33,no. 6,pp. 1297–1299. doi: 10.2337/dc09-1971
  4. Fridetskii B., Kratokhvila I., Gorak I., Tolman V., Yabor A., Budina M. Preanalytical Stage of Laboratory Analysis. Pardubitse Publ.,1999,68 p.(in Russian)
  5. Baranovskii A.Yu. Dietology: Guidance. 4th ed. St. Petersburg, Piter Publ., 2012, 1022 p. (in Russian)
  6. Jeong K., Huh Y.M., Kim S.H., Park Y., Son J.H., Oh S.J., Suh J.S. Characterization of blood using terahertz waves. Journal of Biomedical Optics,2013,vol. 18, no. 10, p. 107008.doi: 10.1117/1.JBO.18.10.107008
  7. Reid C.B., Reese G., Gibson A.P., Wallace V.P. Terahertz time-domain spectroscopy of human blood. IEEE Transactions on Terahertz Science and Technology, 2013, vol. 3, no. 4, pp. 363–367.doi: 10.1109/tthz.2013.2267414
  8. Fitzgerald A.J., Berry E., Zinov'ev N.N., Homer-Vanniasinkam S., Miles R.E., Chamberlain J.M., Smith M.A. Catalogue of human tissue optical properties at terahertz frequencies. Journal of Biological Physics, 2003, vol. 29, no. 2-3,pp. 123–128.doi: 10.1023/A:1024428406218
  9. Cherkasova O.P., Nazarov M.M., Smirnova I.N., Angeluts A.A., Shkurinov A.P. Application of time-domain THz spectroscopy for studying blood plasma of rats with experimental diabetes. Physics of Wave Phenomena,2014,vol. 22,no. 3,pp. 185–188. doi: 10.3103/S1541308X14030042
  10. Cherkasova O.P., Nazarov M.M., Angeluts A.A., Shkurinov A.P. Analysis of blood plasma at terahertz frequencies. Optics and Spectroscopy,2016,vol. 120, no. 1, pp. 50–57. doi: 10.1134/S0030400X16010069
  11. Tonouchi M. Cutting-edge terahertztechnology. Nature Photonics, 2007, vol. 1, no. 2, pp. 97–105. doi: 10.1038/nphoton.2007.3
  12. Pawar A.Y., Sonawane D.D., Erande K.B., Derle D.V. Terahertz technology and its applications. Drug Invention Today, 2013, vol. 5, no. 2, pp. 157–163. doi: 10.1016/j.dit.2013.03.009
  13. Zhang X.C., Xu J. Introduction to THz Wave Photonics. Springer, 2010, 246 p. doi: 10.1007/978-1-4419-0978-7
  14. Son J.H. Terahertz Biomedical Science and Technology. CRC Press, 2014, 355 p.
  15. Pickwell E., Wallace V.P. Biomedical applications of terahertz technology. Journal of Physics D: Applied Physics, 2006, vol. 39, no. 17, pp. R301–R310. doi: 10.1088/0022-3727/39/17/R01
  16. Horiike K., Miura R., Ishida T., Nozaki M. Stoichiometry of the water molecules in glucose oxidation revisited: Inorganic phosphate plays a unique role as water in substrate‐level phosphorylation. Biochemistry and Molecular Biology Education, 1996, vol. 24, no. 1, pp. 17–20.doi: 10.1016/0307-4412(95)00140-9
  17. Xu J., Plaxco K.W., Allen S.J. Probing the collective vibrational dynamics of a protein in liquid water by terahertz absorption spectroscopy. Protein Science, 2006, vol. 15, no. 5, pp. 1175–1181.doi: 10.1110/ps.062073506
  18. Sakai V.G., Alba-Simionesco C., Chen S.H. Dynamics of Soft Matter: Neutron Applications. Springer Science & Business Media, 2012, 399 p.
  19. Bartik K. The role of water in the structure and function of biological macromolecules. 2005. Available at: http://www.exobiologie.fr/index.php/vulgarisation/chimie-vulgarisation/the-role-of-water-in-the-structure-and-function-of-biological-macromolecules (accessed 30.06.18).
  20. Bespalov V.G., Gorodetskii A.A., Denisyuk I.Y., Kozlov S.A., Krylov V.N., Lukomskii G.V., Petrov N.V., Putilin S.E. Methods of generating superbroadband terahertz pulses with femtosecond lasers. Journal of Optical Technology, 2008, vol. 75, no. 10, pp. 636–642. doi: 10.1364/JOT.75.000636
  21. Chmielak B., Waldow M., Matheisen C., Ripperda C., Bolten J., Wahlbrink T., Nagel M., Merget F., Kurz, H. Pockels effect based fully integrated, strained silicon electro-optic modulator. Optics Express, 2011, vol. 19, no. 18, pp. 17212–17219. doi: 10.1364/OE.19.017212
  22. Mallat S. A Wavelet Tour of Signal Processing. 3rd ed. Academic Press, 2009, 832 p.
  23. Rioul O., Vetterli M. Wavelets and signal processing. IEEE Signal Processing Magazine, 1991, vol. 8, no. 4, pp. 14–38. doi: 10.1109/79.91217
  24. Strang G., Nguyen T. Wavelets and Filter Banks. 2nd ed. Wellesley-Cambridge Press, 1996, 520 p.
  25. Mallat S., Zhang S. Characterization of signals from multiscale edges. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, vol. 14, no. 7, pp. 710–732. doi: 10.1109/34.142909
  26. Dexheimer S.L. Terahertz Spectroscopy: Principles and Applications. CRC Press, 2007, 360 p.
  27. Yasuda H., Hosako I. Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy. Japanese Journal of Applied Physics, 2008, vol. 47, no. 3R, pp. 1632–1634. doi: 10.1143/JJAP.47.1632
  28. Gusev S.I., Borovkova M.A., Strepitov M.A., Khodzitsky M.K. Blood optical properties at various glucose level values in THz frequency range. European Conference on Biomedical Optics. Munich, Germany, 2015, p. 95372A. doi: 10.1364/ECBO.2015.95372A
  29. Gusev S.I., Demchenko P.S., Cherkasova O.P., Fedorov V.I., Khodzitsky M.K. Influence of glucose concentration on blood optical properties in THz frequency range. Chinese Optics, 2018. vol. 11, no. 2,pp. 182–189.doi: 10.3788/CO.20181102.0182
  30. Ostrow J.D., Pascolo L., Tiribelli C. Mechanisms of bilirubin neurotoxicity. Hepatology,2002,vol. 35,no. 5,pp. 1277–1280. doi: 10.1053/jhep.2002.33432
  31. Milyukova I.V. Handbook of Hypertension. Moscow, AST, Sova Publ., 2010, 224 p. (in Russian)
  32. Anvaer A. The Patient's Main Book. Moscow, AST, 2017, 226 p.(in Russian)
  33. Lumeij J.T. Plasma urea, creatinine and uric acid concentrations in response to dehydration in racing pigeons (Columba livia domestica). Avian Pathology,1987,vol. 16, no. 3,pp. 377–382.doi: 10.1080/03079458708436388
  34. Nasonova V., Barskova V. Illness of abundance. Nauka i Zhizn', 2004, vol. 7. (in Russian)
  35. Kang D.H., Park S.K., Lee I.K., Johnson R.J. Uric acid–induced C-reactive protein expression: implication on cell proliferation and nitric oxide production of human vascular cells. Journal of the American Society of Nephrology, 2005, vol. 16, no. 2, pp. 3553–3562. doi: 10.1681/ASN.2005050572
  36. Hou L., Zhang M., Han W., Tang Y., Xue F., Liang S., Zhang B., Wang W., Asaiti K., Wang Y., Pang H. Influence of salt Intake on association of blood uric acid with hypertension and related cardiovascular risk. PloS One, 2016,vol. 11, no. 4,art.e0150451.doi: 10.1371/journal.pone.0150451
  37. Vinh N.Q., Sherwin M.S., Allen S.J., George D.K., Rahmani A.J., Plaxco K.W. High-precision gigahertz-to-terahertz spectroscopy of aqueous salt solutions as a probe of the femtosecond-to-picosecond dynamics of liquid water. The Journal of Chemical Physics,2015,vol. 142, no. 16,art.164502.doi: 10.1063/1.4918708
  38. Vance J.E., Vance D.E. Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier,2008, 639 p.
  39. Belova L.A., Ogloblina O.G., Belov A.A., Kukharchuk V.V. Modification of lipoproteins. Physiological and pathogenetical role of modified lipiproteins: a review. Biomeditsinskaya Khimiya, 2000, vol. 46, no. 1, pp. 8–21. (in Russian)
  40. Reid C.B., Pickwell-MacPherson E., Laufer J.G., Gibson A.P., Hebden J.C., Wallace V.P. Accuracy and resolution of THz reflection spectroscopy for medical imaging. Physics in Medicine andBiology,2010,vol. 55, no. 16,pp. 4825–4838.doi: 10.1088/0031-9155/55/16/013


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика