DOI: 10.17586/2226-1494-2018-18-5-744-750


Y. M. Andreeva, M. M. Sergeev, U. E. Gabysheva, g. V. Shishkovsky I

Read the full article 
Article in Russian

For citation: Andreeva Ya.M., Sergeev M.M., Gabysheva U.E., Shishkovsky I.V. Formation of insulating barriers in silica porous films by CO2 laser writing. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 5, pp. 744–750 (in Russian). doi: 10.17586/2226-1494-2018-18-5-744-750

The paper proposes the method of integral architecture formation for silica porous films used as solid-state media for different indicators. The formation of sells insulated from each other by barriers in the porous media is performed by direct laser writing using CO2laser source. We study the mechanism of laser induced modification of silica porous film with the thickness of 170±10 nm on glass substrate. We also estimate the laser processing parameters for the formation of barriers with the determined crater depth of 1.5±0.5 μm and beads height of 2.5±0.5 μm, the laser intensities in the range of q = 8.7–11.3 kW/cm2 and scanning speed of υ= 0.1-0.7 mm/s. The dependence of the laser track geometry on scanning speed and laser intensity is analyzed by optical microscopy and contact profilometry. The produced sells were impregnated with aqueous solution of copper (II) nitrate and rhodamine to demonstrate the efficiency of the insulating barriers. Looking ahead this technique can be applied for fabrication of thin film sensing devices containing different metal nanoparticles with unique optical properties.

Keywords: silica sol-gel films, insulating barriers, CO2 laser, thermal densification, metal nanoparticles

Acknowledgements. The reported study was funded by the RFBR according to the research project No. 17-32-50133 mol_nr

  1. Carrilho E., Martinez A.W., Mirica K.A., Phillips S.T., Siegel A.C., Wiley B., Whitesides G.M. Three-Dimensional Microfluidic Devices. Patent US20110123398A1, 2014.
  2. Stenzel M.H., Barner-Kowollik C., Davis T.P. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry, 2006, vol. 44, no. 8, pp. 2363–2375. doi: 10.1002/pola.21334
  3. Kandimalla V.B., Tripathi V.S., Ju H. Immobilization of biomolecules in sol–gels: biological and analytical applications. Critical Reviews in Analytical Chemistry, 2006, vol. 36, no. 2, pp. 73–106. doi: 10.1080/10408340600713652
  4. Evstrapov A., Esikova N., Rudnitskaya G., Antropova T.V. Porous glasses as a substrate for sensor elements. Optica Applicata, 2010, vol. 40, no. 2, pp. 333–340.
  5. Ghallab Y.H., Ismail Y. CMOS circuits and systems for Lab-on-a-Chip applications. In Lab-on-a-Chip Fabrication and Application. InTech, 2016. doi: 10.5772/63303 
  6. Gryadunov D., Zimenkov D., Mikhailovich V., Nasedkina T., Dement'eva E., Rubina A., Pan'kov S., Barskii V., Zasedatelev A. Technology of hydrogel biochips and its application in medical laboratory diagnostics. Laboratoriya, 2009, vol. 3, no. 11, pp. 10–14.(in Russian)
  7. Pettit R., Brinker C., Ashley C. Sol-gel double-layer antireflection coatings for silicon solar cells. Solar Cells, 1985, vol. 15, no. 3, pp. 267–278. doi: 10.1016/0379-6787(85)90083-3
  8. Podbielska H., Ulatowska-Jarza A., Muller G., Eichler H.J. Sol-gels for optical sensors. Optical Chemical Sensors. Springer, 2006, vol. 224, pp. 353–385. doi: 10.1007/1-4020-4611-1_17
  9. Mac Craith B.D., Donagh C.M., McEvoy A., Butler T., O’Keeffe G., Murphy V. Optical chemical sensors based on sol-gel materials: recent advances and critical issues. Journal of Sol-Gel Science and Technology, 1997, vol. 8, no. 1-3, pp. 1053–1061.
  10. Mujahid A., Lieberzeit P.A., Dickert F.L. Chemical sensors based on molecularly imprinted sol-gel materials. Materials, 2010, vol. 3, no. 4, pp. 2196–2217. doi: 10.3390/ma3042196
  11. Jeronimo P.C., Araujo A.N., Montenegro M.C.B. Optical sensors and biosensors based on sol–gel films. Talanta, 2007, vol. 72, no. 1, pp. 13–27. doi: 10.1016/j.talanta.2006.09.029
  12. Nouira W., Maaref A., Elaissari H., Vocanson F., Siadat M., Jaffrezic-Renault N. Comparative study of conductometric glucose biosensor based on gold and on magnetic nanoparticles. Materials Science and Engineering C, 2013, vol. 33, no. 1, pp. 298–303. doi: 10.1016/j.msec.2012.08.043
  13. Antypas H., Garcia M.V., Weibull E., Svahn H.A., Richter-Dahlfors A. A universal platform for selection and high-resolution phenotypic screening of bacterial mutants using the nanowell slide. Lab on a Chip, 2018, vol. 19, no. 12, pp. 1767–1777. doi: 10.1039/c8lc00190a
  14. Pan L., Chortos A., Yu G., Wang Y., Isaacson S., Allen R., Shi Y., Dauskardt R., Bao Z. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nature Communications, 2014, vol. 5, art. 3002. doi: 10.1038/ncomms4002
  15. Bashouti M.Y., Manshina A., Povolotckaia A., Povolotskiy A., Kireev A., Petrov Y., Mackovic M., Spiecker E., Koshevoy I., Tunik S., Christiansen S. Direct laser writing of mu-chips based on hybrid C-Au-Ag nano-particles for express analysis of hazardous and biological substances. Lab on a Chip, 2015, vol. 15, no. 7, pp. 1742–1747. doi: 10.1039/c4lc01376j
  16. Battie Y., Destouches N., Chassagneux F., Jamon D., Bois L., Moncoffre N., Toulhoat N. Optical properties of silver nanoparticles thermally grown in a mesostructured hybrid silica film. Optical Materials Express, 2011, vol. 1, no. 5, pp. 1019–1033. doi: 10.1364/OME.1.001019
  17. Cheng J., Kar A. Mathematical model for laser densification of ceramic coating. Journal of Materials Science, 1997, vol. 32, no. 23, pp. 6269–6278. doi: 10.1023/A:1018693212407
  18. Araujo F., Chia T., Hench L. Laser densification of channel waveguides in gel-silica substrates. Journal of Sol-Gel Science and Technology, 1994, vol. 2, no. 1-3, pp. 729–735. doi: 10.1007/BF00486339
  19. Lei J., Trofimov A.A., Chen J., Chen Z., Hong Y., Yuan L., Zhu W., Zhang Q., Jacobsohn L.G., Peng F., Bordia R.K., Xiao H. Thick Er-doped silica films sintered using CO2 laser for scintillation applications. Optical Materials, 2017, vol. 68, pp. 63–69. doi: 10.1016/j.optmat.2017.03.035

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.