DOI: 10.17586/2226-1494-2018-18-5-751-757


SPECTRAL CHARACTERISTICS STUDY OF PHASE-SHIFTED FIBER BRAGG GRATINGS UNDER PRESSURE APPLIED PERPENDICULAR TO FIBER AXIS

V. A. Novikova, S. V. Varzhel, A. A. Dmitriev, Y. K. Zalesskaya, R. F. Idrisov


Read the full article 
Article in Russian

For citation: Novikova V.A., Varzhel S.V., Dmitriev A.A., Zalesskaya Yu.K., Idrisov R.F. Spectral characteristics study of phase-shifted fiber Bragg gratings under pressure applied perpendicular to fiber axis. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 5, pp. 751–757 (in Russian). doi: 10.17586/2226-1494-2018-18-5-751-757

Abstract
Subject of Research.The paper presents the study of effect that occurs when pressure is applied to the phase-shifted fiber Bragg gratings perpendicular to the fiber axis. Method. Fiber Bragg gratings inscription was performed using Talbot interferometer, and the introduction of a phase shift – by means of the electrical discharge of an arc fusion splicer. The excimer laser system was used as a radiation source. The change in the reflection spectra at different pressures on the optical fiber is measured. Main Results. Fiber Bragg gratings with a phase shift are obtained by the procedure that excludes the use of high-precision instruments during the phase-shift introduction step. Experiment results are given showing up the distance dependence between the local minima in the reflection spectrum of fiber Bragg grating with a phase shift on the applied mass arising as a result of the induced birefringence. It is shown that the change in spectral characteristics is related to the birefringence effect owing to stresses inside the fiber. As a result, the second local minimum appears in reflectance band. Practical Relevance. Research results can be used in creation of a sensing element of a fiber optic pressure sensor.  This study demonstrates the application possibilities of Bragg gratings with a phase shift as sensing elements in fiber-optic pressure sensors

Keywords: fiber Bragg grating, phase shift, Talbot interferometer, excimer laser, pressure sensor, birefringence

Acknowledgements. This work has been performed at ITMO University and supported by the Ministry of Education and Science of the Russian Federation (project No. 03.G25.31.0245).

References
1.      Spolitis S., Ivanovs G. Extending the reach of DWDM-PON access network using chromatic dispersion compensation. IEEE Swedish Communication Technologies Workshop, 2011, pp. 29–33. doi: 10.1109/swe-ctw.2011.6082484
2.      Jiang H., Chen J., Liu T.D., Fu H. Design of an FBG sensor network based on pareto multi-objective optimization. IEEE Photonics Technology Letters, 2013, vol. 25, no. 15, pp. 1450–1453. doi: 10.1109/lpt.2013.2264802
3.      Shuo L., Fengping Y., Wanjing P., Ting F., Ze D., Geekung C. Tunable dual-wavelength thulium-doped fiber laser by employing a HB-FBG. IEEE Photonics Technology Letters, 2014, vol. 26, no. 18, pp. 1809–1812. doi: 10.1109/lpt.2014.2336654
4.      Alyshev S.V., Ryumkin K.E., Shubin A.V., Medvedkov O.I., Khopin V.F., Gur’yanov A.N., Dianov E.M. Fibre laser based on tellurium-doped active fibre. Quantum Electronics, 2014, vol. 44, no. 2, pp. 95–97. doi: 10.1070/qe2014v044n02abeh015367
5.      Jiang Qi, Yu M., Zhou X., Guo T.Y., Song J.X. A novel fiber Bragg grating accelerometer based on fiber vibrating wire. Proc. 8th Int. Conf. on Sensing Technology. Liverpool, UK, 2014, pp. 529–533.
6.      Wang S.L., Wang Y., Hu M.L., Wang J.H., Guo C., Lei H.F. A new style of FBG vibration sensor. Journal of Basic and Applied Physics, 2013, vol. 2, pp. 20–23.
7.      Hill K.O., Fujii Y., Johnson D.C., Kawasaki B.S. Photosensitivity in optical fiber waveguides: application to reflection filter fabrication. Applied Physics Letters, 1978, vol. 32, no. 10, pp. 647–649.doi: 10.1063/1.89881
8.      Meltz G., Morey W.W., Glenn W.H. Formation of Bragg gratings in optical fibers by a transverse holographic method. Optics Letters, 1989, vol. 14, no. 15, pp. 823–825. doi: 10.1364/OL.14.000823
9.      Byron K.C., Sugden K., Bricheno T., Bennion I. Fabrication of chirped bragg gratings in photosensitive fibre. Electronics Letters, 1993, vol. 29, no. 18, pp. 1659–1660. doi: 10.1049/el:19931104
10.   Meltz G., Morey W.W., Glenn W.H. In-fibre Bragg grating tap. Optical Fiber Communication Conference. San Francisco, 1990. doi: 10.1364/ofc.1990.tug1
11.   Othonos A., Lee X., Measures R.M. Superimposed multiple Bragg gratings. Electronics Letters, 1994, vol. 30, no. 23, pp. 1972–1974. doi: 10.1049/el:19941359
12.   Arigiris A., Konstantaki M., Ikiades A., Chronis D., Florias P., Kallimani K., Pagiatakis G. Fabrication of high-reflectivity superimposed multiple-fiber Bragg gratings with unequal wavelength spacing. Optics Letters, 2002, vol. 27, no. 15, pp. 1306–1308.
13.   Littler I.C.M., Rochette M., Eggleton B.J. Adjustable bandwidth dispersionless bandpass FBG optical filter. Optics Express, 2005, vol. 13, no. 9, pp. 3397–3407. doi: 10.1364/opex.13.003397
14.   Wang H. A Phase-Shifted Fiber Bragg Grating Based Humidity Sensor. PhD Thesis. Canada, Ontario, 2013, 55 p.
15.   Canning J., Sceats M.G. π-phase-shifted periodic distributed structures in optical fibres by UV post-processing. Electronics Letters, 1994, vol. 30, no. 16, pp. 1344–1345. doi: 10.1049/el:19940920
16.   Yang Y.H., Liu X.J., Jin W. Phase shifted fiber Bragg grating fabrication techniques and their laser applications. Asia Communications and Photonics Conference, 2013. doi: 10.1364/acp.2013.ath3d.5
17.   Chehura E., James S.W., Tatam R.P. A simple method for fabricating phase-shifted fibre Bragg gratings with flexible choice of centre wavelength. Proc. SPIE, 2009,vol. 7503. doi: 10.1117/12.835466
18.   Novikova V.A., Varzhel' S.V., Gribaev A.I., Arkhipov S.V., Idrisov R.F., Mikhneva A.A., Frolov E.A.Method for fabricating and spectral characteristics analysis of phase-shifted fiber Bragg gratings. Proc. 10th Int. Conf. on Optics-2017. St. Petersburg, Russia, 2017, pp. 392–394. (in Russian)
19.   Rosenthal A., Razansky D., Ntziachristos V. High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating. Optics Letters, 2011,vol. 36,no. 10,pp. 1833–1835.doi: 10.1364/ol.36.001833
20.   Varzhel S.V., Munko A.S., Konnov K.A., Gribaev A.I., Kulikov A.V. Writing of Bragg gratings in birefringent optical fiber with an elliptical stress cladding subjected to hydrogen treatment. Opticheskii Zhurnal, 2016, vol. 83, no. 10, pp. 74–78.(In Russian)
21.   Gribaev A.I., Pavlishin I.V., Stam A.M., Idrisov R.F., Varzhel S.V., Konnov K.A. Laboratory setup for fiber Bragg gratings inscription based on Talbot interferometer. Optical and Quantum Electronics, 2016, vol. 48, no. 12, art. 540.
22.   Othonos A. Fiber Bragg gratings. Review of Scientific Instruments, 1997, vol. 68, no. 12, pp. 4309–4341.
Lefevre H.С. The Fiber-Optic Gyroscope. 2nd ed. Artech House,2014, 407 p


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2019 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика