doi: 10.17586/2226-1494-2018-18-5-826-833


COMPUTATIONALLY EFFECTIVE NUMERICAL SIMULATION METHOD FOR DIFFRACTION-BLURRED IMAGES OF OBJECTS WITH PIECEWISE-LINEAR EDGE CONTOUR

F. M. Inochkin, N. R. Belashenkov


Read the full article  ';
Article in Russian

For citation:
Inochkin F.M., Belashenkov N.R. Computationally effective numerical simulation method for diffraction-blurred images of objects with piecewise-linear edge contour. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 5, pp. 826–833 (in Russian). doi: 10.17586/2226-1494-2018-18-5-826-833


Abstract
Subject of Research. The paper presents research of numerical image simulation for objects with known edge contour, considering optical diffraction blur and image sensor spatial sampling. Computationally effective solution is proposed under restriction of edge contour approximation by a set of straight lines.Method. Proposed method is based on the analytical numerical computation of the Fourier transform for the object bounding polygon. Calculus bandwidthis defined by the optical system diffraction limit and spatial frequency response of the object and background textures.Main Result. Proposed technical solution results in 2-3 order less computation time compared to a subpixel image simulation in spatial domain with subpixel sampling step value of 10-2 pixel.Computational complexity of the proposed approach is invariant with respect to a subpixel accuracy of simulated object geometry representation.Practical Relevance. Proposedapproach may be applied to a solution of inverse problems in the field of optical geometrical measurements and to a study of image processing algorithms with geometrical parameters representation error on the order of 10-1-10-4 pixel.

Keywords: image simulation, Fourier transform calculus, subpixel edge location, center of gravity method, diffraction limit, parallel computing

Acknowledgements. The research is carried out in ITMO University (grant 074-11-2018-004) under the financial support of the Ministry of Education and Science of the Russian Federation.

References
1. Trujillo-Pino A., Krissian K., Aleman-Flores M., Santana-Cedres D. Accurate subpixel edge location based on partial area effect. Image and Vision Computing, 2013, vol. 31, no. 1, pp. 72–90. doi: 10.1016/j.imavis.2012.10.005
2. Bouchara F., Ramdani S. Subpixel edge refinement using deformable models. Journal of the Optical Society of America A, 2009, vol. 26, no. 4, pp. 820–832. doi: 10.1364/josaa.26.000820
3. Mizotin M.M. Subpixel edge detection in the problem of determining the surface tension from an axisymmetric drop profile. Computational Mathematics and Modeling, 2014, vol. 25, no. 3, pp. 365–380. doi: 10.1007/s10598-014-9233-2
4. Korolev A.N., Gartsuev A.I., Polishchuk G.S., Tregub V.P. Metrological studies and the choice of the shape of an optical mark in digital measuring systems. Journal of Optical Technology, 2010, vol. 77, no. 6, pp. 370–372.
5.  Korolev A.N., Lukin A.Ya., Polishchuk G.S. New concept of angular measurement. Model and experimental studies. Journal of Optical Technology, 2012, vol. 79, no. 6,
pp. 352–356. doi: 10.1364/JOT.79.000352
6. Goodman J.W.Introduction to Fourier Optics. McGraw-Hill,2005, 491 p.
7. de Berg M., van Kreveld M., Overmars M., Schwarzkopf O. Computational Geometry. Algorithms and Application. 2nd ed. Springer-Verlag, 2000, 367 p.
8. Gustafsson M.G.L. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 2000, vol. 198, no. 2, pp. 82–87. doi: 10.1046/j.1365-2818.2000.00710.x
9.  Inochkin F.M., Kruglov S.K., Bronshtein I.G. Breaking the diffraction limit in optical edge estimation problem.Information and Control Systems, 2018, no. 1, pp. 96–105. (in Russian) doi: 10.15217/issn1684-8853.2018.1.96
10. Fabijansk A. Gaussian-based approach to subpixel detection of blurred and unsharp edges. Proc. 2014 Federated Conference on Computer Science and Information Systems. Warsaw, 2014, pp. 641–650. doi: 10.15439/2014f136


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика