doi: 10.17586/2226-1494-2018-18-5-843-849


METHODS OF LIFE CYCLE INCREASE FOR THE INTERNET OF THINGS

T. M. Tatarnikova, I. N. Dziubenko


Read the full article  ';
Article in Russian

For citation:
Tatarnikova T.M., Dziubenko I.N. Methods of life cycle increase for the Internet of things. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 5, pp. 843–849 (in Russian). doi: 10.17586/2226-1494-2018-18-5-843-849


Abstract
Subject of Research. The paper proposes models that make it possible to extend the Internet of things life cycle as a result of the sensory field clustering and the transfer of the interaction functions from the base station to the head node of the cluster. The efficiency of the clustered wireless sensor network was evaluated in comparison with the nonclustered one in terms of the residual energy parameter and the network lifetime. Methods. The Internet of things sensory field clustering method was used. The method is based on the idea of​equiprobable rotation of the head nodes, taking into account the level of nodes residual energy and the distance from the sensor devices to the head node. The time division multiple accessmechanism in the interaction of sensory devices with the head node of the cluster minimizes the probability of data transmission collision. Simulation modeling provides a tool for selecting clustering parameters while providing the required characteristics of the functioning of the Internet of things. Main Results. A wireless sensor network simulation model is proposed, which can find application in the Internet of things designing tasks. Estimations are given demonstrating the clustering expediency of  the Internet of things sensory field at sensory field sizes exceeding the distance from the most remote node to the base station. Practical Relevance.Sensor field clustering provides the increase of the Internet of things life cycle. The proposed models will be useful in the early stages of the Internet of things design.

Keywords: wireless sensor networks, Internet of things, clustering, self-organization, head node, base station, sensor field, life cycle, residual energy, Time Division Multiple Access

References
1.  Kellmereit D., Obodoevski D. The Silent Intelligence: The Internet of Things. DND Ventures LLC, 2013, 166 p.
2.  Goldshtein B.S., Koucheryavy A. Post-NGN Era Communication Networks. St. Petersburg, BKhV-Peterburg Publ., 2014, 160 p. (in Russian)
3.  Tatarnikova T.M., Elizarov M.A. Model of estimating temporal characteristics of IoT Network interaction. Informatsionno-Upravlyayushchie Sistemy, 2017, no. 2, pp. 44–50. (in Russian). doi: 10.15217/issn1684-8853.2017.2.44
4.  Liu B., Dousse O., Nain P., Towsley D. Dynamic coverage of mobile sensor networks. IEEE Transactions on Parallel and Distributed Systems, 2013, vol. 24, no. 2, pp. 301–311. doi: 10.1109/tpds.2012.141
5.  Osipov I.E. Mesh-networks: technologies, applications, equipment. Communication Technologies and Equipment, 2006, no. 4, pp. 38–45. (in Russian)
6.  Park D.S. Fault tolerance and energy consumption scheme of a wireless sensor network. International Journal of Distributed Sensor Networks, 2013, vol. 9, no. 11, art. 396850. doi: 10.1155/2013/396850
7.  Bogatyrev V.A., Bogatyrev S.V. Optimality criteria of multilevel failure-safe computer systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2009, no. 5, pp. 92–97. (in Russian)
8.  Zharkov S.N. Stochastic generation proactive set clustering in mobile wireless sensor networks. T-Comm: Telecommunications and Transport, 2013, no. 5, pp. 29–34. (in Russian)
9.  Ran G., Zhang H., Gong S. Improving on LEACH protocol of wireless sensor networks using fuzzy logic. Journal of Information and Computational Science, 2010, no. 7, pp. 767–775.
10. Vishnevskii V.V., Portnoi S.L., Shakhnovich I.V. Encyclopaedia of WiMAX. A Way to 4G. Moscow, Tekhnosfera Publ., 2009, 472 p. (in Russian)
11. Tatarnikova T.M., Elizarov M.A. A procedure for conflict resolution in RFID-system. Journal of Instrument Engineering, 2017, vol. 60, no. 2, pp. 150–157. (in Russian) doi: 10.17586/0021-3454-2017-60-2-150-157
12. Wang Y.C., Wu F.J., Tseng Y.C. Mobility management algorithms and applications for mobile sensor networks. Wireless Communications and Mobile Computing, 2012, vol. 12, no. 1, pp. 7–21. doi: 10.1002/wcm.886
13. Markovich N.M., Krieger U.R. Statistical analysis and modeling of peer-to-peer multimedia traffic. Lecture Notes in Computer Science, 2011, vol. 5233, pp. 70–97. doi: 10.1007/978-3-642-02742-0_4
14. Bogatyrev V.A., Bogatyrev A.V., Bogatyrev S.V. Estimation of reliability of execution of real-time queries. Journal of Instrument Engineering, 2014, vol. 57, no. 4, pp. 46–48. (in Russian)
15. Kutuzov O.I., Tatarnikova T.M. Infocommunication Networks. Simulation and Evaluation of Probability-Time Characteristics. St. Petersburg, SUAI Publ., 2015, 381 p. (in Russian)
16. Tatarnikova T.M. Analytical-statistical model of mesh network survivability evaluation. Informatsionno-Upravlyayushchie Sistemy, 2017, no. 1, pp. 17–22. (in Russian) doi: 10.15217/issnl684-8853.2017.1.17
17. Bogatyrev V.A., Bogatyrev A.V. Functional reliability of real-time systems. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, no. 4, pp. 150–151. (in Russian)
18. Tatarnikova T.M. Structural synthesis of an interface center for corporate networks. Informatsionno-Upravlyayushchie Sistemy, 2015, no. 3, pp. 92–98. (in Russian)
19. Kutuzov O.I., Sergeev V.G., Tatarnikova T.M. Switches in the Corporate Networks. Simulation and Calculation. St. Petersburg, Sudostroenie Publ., 2003, 170 p. (in Russian)
Bogatyrev V.A., Bogatyrev S.V., Bogatyrev A.V. Optimization of the tree-structured network with redundant of switching nodes and links. Telekommunikatsii, 2013, no. 2, pp. 42–48. (in Russian).


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика