doi: 10.17586/2226-1494-2018-18-6-961-967


DESIGN OF ATHERMALIZED INFRARED LENSES INVOLVING DIFFRACTIVE OPTICAL ELEMENTS

A. S. Garshin, K. A. Andreev


Read the full article  ';
Article in Russian

For citation:
Garshin A.S., Andreev K.A. Design of athermalized infrared lenses involving diffractive optical elements. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2018, vol. 18, no. 6, pp. 961–967 (in Russian). doi: 10.17586/2226-1494-2018-18-6-961-967


Abstract
The paper considers the problem of infrared athermalized lenses design involving a restricted list of materials. We analyzed thermo-optical properties of the materials, working in long-wave infrared range, and analysis results are presented. Thermo-opticalproperties of diffractive optical elements (DOE) are analyzed. It is established that the usage of diffractive elements can become a possible solution for the problem of infrared lens athermalization under conditions of restricted list of materials. The set of equations is developed for dimensional calculation of infrared lenses with passive athermalization by DOE application. We studied the effect of a secondary spectrum on modulation transfer function of an optical system in combinations of optical materials with DOE. Research results are given. The example of infrared athermalized lens calculation with DOE is shown.

Keywords: DOE, infrared lenses, secondary spectrum, thermo-optical aberrations, athermalization

References
  1. Tarasov V.V., Yakushenkov Yu.G. Infrared Tracking Systems. Moscow, Logos Publ., 2004, 444 p. (in Russian)
  2. Yakushenkov Yu.G. Theory and Calculation of Optoelectronic Devices. Moscow, Logos Publ., 2011, 568 p. (in Russian)
  3. Lloyd J.M. Thermal Imaging Systems. Springer, 1975, 456 p. doi: 10.1007/978-1-4899-1182-7
  4. Roberts M. Athermalisation of infrared optics: a review. Proc. SPIE, 1989, vol. 1049, pp. 72–81. doi: 10.1117/12.951409
  5. Tamagawa Y., Wakabayashi S., Tajime T. New design method for athermalized optical systems. Proc. SPIE, 1992, vol. 1752, pp. 232–238. doi: 10.1117/12.130734
  6. Leniewski M., Kryszczynski T. Athermalization of optical systems. Proc. SPIE,1998, vol. 3320, pp. 297–306. doi: 10.1117/12.301355
  7. Hilton A.R., McCord J., Whaley G. Production of infrared-transmitted chalcogenide glasses. Proc. SPIE, 1998, vol. 3424, pp. 47–59. doi: 10.1117/12.323763
  8. Choi J.H., Jang W.J., Cha D.H., Kim J.H., Kim H.J. Chalcogenide glass with good thermal stability for the application of molded infrared lenses. Proc. SPIE, 2014, vol. 9253, art. 925310. doi: 10.1117/12.2068005
  9. Gleason B., Sisken L., Smith C., Richardson K. Designing mid-wave infrared (MWIR) thermo-optic coefficient (dn/dT) in chalcogenide glasses. Proc. SPIE, 2016, vol. 9822, art. 982207. doi: 10.117/12.2229056
  10. Zapryagaeva L.A., Sveshnikova I.S. Calculation and Design of Optical Systems. Moscow, Logos Publ., 2000, 584 p.
    (in Russian)
  11. Wang J., Vue C. Athermalization and thermal characteristics of multilayer diffractive optical elements. Applied Optics, 2015, vol. 54, no. 33, pp. 9665–9670. doi: 10.1364/AO.54.009665
  12. Wood A.P., Lewell L., Manning P.A., Donohou P.P. Passively athermalised hybrid objective for a far infrared uncooled hermal imager. Proc. SPIE, 1996, vol. 2744, pp. 500–509.
    doi: 10.1117/12.243490
  13. Mann A. Infrared Optics and Zoom Lenses. 2nd ed. Washington, SPIE, 2009, 164 p.
  14. Barmicheva G.V., Gan M.A., Starkov A.A. Performance analysisof aspheric-diffractive elements in optical systems for the IR. Proc. 9th Int. Conf. Applied Optics 2010. St. Petersburg, 2010, pp. 227–230. (in Russian)
  15. Chen C.W. Athermalized and Achromatized Optical Systems Employing Diffractive Optical Element. Patent US5691847A, 1994.


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика