doi: 10.17586/2226-1494-2018-18-6-968-975


IMPLEMENTATION OF FREQUENCY AND PHASE SYNCHRONIZATION OF FIBER-OPTIC HYDROACOUSTIC SENSORS ARRAY

M. V. Mikheev, I. G. Deyneka, M. Y. Plotnikov, A. S. Aleynik, P. A. Shuklin


Read the full article  ';
Article in русский

For citation:
Mikheev M.V., Deyneka I.G., Plotnikov M.Yu., Aleinik A.S., Shuklin P.A. Implementation of frequency and phase synchronization of fiber-optic hydroacoustic sensors array. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2018, vol. 18, no. 6, pp. 968–975 (in Russian). doi: 10.17586/2226-1494-2018-18-6-968-975


Abstract
Subject of Research.The problem of synchronization in arrays of distributed fiber-optic hydroacoustic sensors is considered. It is shown that noise floor level is one of the most important factors affecting the operation of the sensors. The maximum allowable level of phase noise arising from the operation of the synchronization system is determined. The main existing methods of synchronization are considered, and their influence on phase noise level is estimated. Method. The signal resampling method was used as the approach for signal synchronization task. Mathematical modeling of that method in the MATLAB environment was performed. It was shown that the addition of samples to the studied signal leads to a significant increase in phase distortion. Main Results. The impact of the clock frequency instability at the signal skew in the absence of synchronization system is numerically estimated. In case of ± 20 ppm generator clock frequency deviation, the skew reaches one second after 7 hours of work. It is shown that when 8 samples per second are added to the synchronized signal, spectral distortions reach the order of 100 µrad/Hz1/2. A hardware synchronization method is proposed that provides the possibility to increase the synchronization accuracy without distortion of the spectral and phase characteristics of the signal. The method is realized by adjusting local clock frequency generator involving feedback signal. Practical Relevance. The paper proposes two synchronization methods that allow for application of the Ethernet interface according to the IEEE 802.3 standard aimed at the implementation of the distributed sensor system synchronization. The paper presents an analytical and experimental evaluation of phase jitter value between different channels of the measuring system. These methods can be used in other distributed systems, where there is an urgent task of synchronization of its nodes while maintaining scalability and flexibility of the entire system.

Keywords: fiber-optic sensor, distributed hydroacoustic systems, frequency and phase synchronization, jitter, interpolation

Acknowledgements. This work was accomplished in ITMO University and was supported by the Ministry of Education and Science of the Russian Federation (project No. 03.G25.31.0245).

References
  1. Fiber Optic Sensors: An Introduction for Engineers and Scientists. Ed. E. Udd. NY, John Wiley & Sons, 2011, 512 p. doi: 10.1002/9781118014103
  2. Yin S., Ruffin P.B., Yu F.T.S. Fiber Optic Sensors. 2nd ed. CRC Press, 2008, 492 p.
  3. Cranch G.A., Nash P.J., Kirkendall C.K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications. IEEE Sensors Journal, 2003, vol. 3, no. 1, pp. 19–30. doi: 10.1109/JSEN.2003.810102
  4. Nakstad H., Kringlebotn J.T. Realisation of a full-scale fibre-optic ocean bottom seismic system. Proceedings of SPIE, 2008, vol. 7004. doi: 10.1117/12.791158
  5. Bykadorov M.V., Plotnikov M.Yu., Volkov A.V., Dmitraschenko P.Yu. Study of gain factor effect of erbium doped fiber amplifier on noise floor level of fiber-optic interferometric sensor. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2018, vol. 18, no. 4, pp. 561–566.
    (in Russian) doi: 10.17586/2226-1494-2018-18-4-561-566
  6. De Freitas J.M. Recent developments in seismic seabed oil reservoir monitoring applications using fibre-optic sensing networks. Measurement Science and Technology, 2011, vol. 22, no. 5, p. 052001. doi: 10.1088/0957-0233/22/5/052001
  7. Syed A.A., Heidemann J. Time synchronization for high latency acoustic networks. Proc. 25th IEEE Int. Conf. on
    Computer Communications INFOCOM
    , 2006, vol. 6. doi: 10.1109/infocom.2006.161
  8. Sampath A., Tripti C. Synchronization in distributed systems. Advances in Computing and Information Technology, 2012, pp. 417–424. doi: 10.1007/978-3-642-31513-8_43
  9. The Ocean Engineering Handbook/ Ed. F. El-Hawary. Boca Raton, CRC Press, 2001, 416 p.
  10. Plotnikov M.Y., Volkov A.V., Kiselev S.S., Khramchenko E.A. Development and research of fiber-optic hydrophone protective housing. Scientific and Technical Journal of Information
    Technologies, Mechanics and Optics
    , 2017, vol. 17, no. 5, pp. 767–774 (in Russian).
    doi: 10.17586/2226-1494-2017-17-5-767-774
  11. Lavrov V.S., Plotnikov M.Y., Aksarin S.M., Efimov M.E., Shulepov V.A., Kulikov A.V., Kireenkov A.U. Experimental investigation of the thin fiber-optic hydrophone array based on fiber Bragg gratings. Optical Fiber Technology, 2017, vol. 34, pp. 47–51. doi: 10.1016/j.yofte.2017.01.003
  12. Belikin M.N., Plotnikov M.Yu., Strigalev V.E., Kulikov A.V., Kireenkov A.Yu. Experimental comparison of homodyne demodulation algorithms for phase fiber-optic sensor.Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2015, vol. 15, no. 6, pp. 1008–1014. (in Russian). doi: 10.17586/2226-1494-2015-15-6-1008-1014
  13. Volkov A.V., Plotnikov M.Y., Mekhrengin M.V., Miroshnichenko G.P., Aleynik A.S. Phase modulation depth evaluation and correction technique for the PGC demodulation scheme in fiber-optic interferometric sensors. IEEE
    Sensors Journal
    , 2017, vol. 17, no. 13, pp. 4143–4150. doi: 10.1109/JSEN.2017.2704287
  14. Nikitenko A.N., Plotnikov M.Y., Plotnikov A.V., Mekhrengin M.V., Kireenkov A.Y. PGC-Atan demodulation scheme with the carrier phase delay compensation for fiber-optic interferometric sensors. IEEE Sensors Journal, 2018, vol. 18, no. 5, pp. 1985–1992.doi: 10.1109/JSEN.2018.2792540


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика