doi: 10.17586/2226-1494-2018-18-6-982-989


DIELECTRIC PROPERTIES OF POLYURETHANE NANOCOMPOSITES MODIFIED BY FULLERENE С60 AND NANODIAMONDS

E. N. Guseva, D. V. Pikhurov, V. V. Zuev


Read the full article  ';
Article in Russian

For citation:
Guseva E.N., Pikhurov D.V., Zuev V.V. Dielectric properties of polyurethane nanocomposites modified by fullerene С60 and nanodiamonds. Scientific and Technical Journal of Information Technologies, Mechanics and Optics , 2018, vol. 18, no. 6, pp. 982–989 (in Russian). doi: 10.17586/2226-1494-2018-18-6-982-989


Abstract
The paper describes preparation of polyurethane composites infused with nano- and macro-sized carbonaceous fillerswith a different surface nature (with a hydrophobic surface-fullerene C60, fullerene soot, with a hydrophilic surface nano-diamonds, nano-diamond charge), with loading varying from 0.1 to 0.5 wt. % by in situ polymerization. The obtained nano-composites were measured by the method of dielectric spectroscopy to determine the nature of the influence of the surface origin and particle size on the structure and properties of the finished material. It was found that loading of fillers leads to the decrease in the process of α-relaxation activation energycompared to neat polyurethane (PU). It was revealed that the non-specific π-π interaction for nanosized fillers dominates over specific H-bonding, which can be related to the oxygen groups on the shells of nano-diamonds. The dielectric spectroscopy demonstrated that the glass transition temperature values of the nano-composites increase in comparison with neat PU, manifesting the so-called "antiplasticizating phenomenon", while composites with macro-sized filler exhibit a typical plasticizing effect for traditional fillers. The greatest value of the D parameter (fragility) corresponds to a sample with fullerene soot. The coincidence of activation energies of Maxwell-Wagner-Sillars polarization for different fillers means that the dimensions of the hard domains in the polymer have not changed.

Keywords: polyurethane nanocomposites, dielectric properties, glass transition temperature, nanodiamonds, fullerene С60, antiplasticizating phenomenon

Acknowledgements. All dielectric behaviour measurements were performed at the Center for Diagnostics of Functional Materials for Medicine, Pharmacology and Nanoelectronics of Research Park of St. Petersburg State University.

References
  1. Yilgor I., Yilgor E., Wilkes G.L. Critical parameters in designingsegmented polyurethanes and their effect on the morphology and properties: a comprehensive review. Polymer, 2015, vol. 58, pp. A1–A36. doi: 10.1016/j.polymer.2014.12.014
  2. Treacy M.M.J., Ebesen T.W., Gibson J.M. Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature(London),1996,vol. 381,pp. 678–680. doi: 10.1038/381678a0
  3. Chen X., Wu L., Zhou S., You B.In situpolymerization and characterization of polyester-based polyurethane/nano-silica composites. Polymer International, 2003, vol. 52, no. 6, pp. 993–998. doi: 10.1002/pi.1176
  4. Swain S., Sharma R. ., Bhattacharya S., Chaudhary L. Effects of nano-silica/nano-alumina on mechanical and physical properties of polyurethane composites and coatings. Transactions on Electrical and Electronic Materials, 2013, vol. 14, no. 1, pp. 1–8.doi: 10.4313/TEEM.2013.14.1.1
  5. Sabzi M., Mirabedini S.M., Zohuriaan-Mehr J., Atai M. Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Progress in Organic Coatings, 2009, vol. 65, no. 2, pp. 222–228. doi: 10.1016/j.porgcoat.2008.11.006
  6. Tien Y.I., Wei K.H. The effect of nano-sized silicate layers from montmorillonite on glass transition, dynamic mechanical, and thermal degradation properties of segmented polyurethane. Journal of Applied Polymer Science, 2002, vol. 86, pp. 1741–1748.doi: 10.1002/app.11086
  7. Bistricic L., Baranovic, Leskovac G.M., Bajsic E.G. Hydrogen bonding and mechanical properties of thin films of polyether-based polyurethane-silica nanocomposites. European Polymer Journal, 2010, vol. 46, pp. 1975–1987. doi: 10.1016/j.eurpolymj.2010.08.001
  8. Verma G., Kaushik A., Ghosh A.K. Preparation, characterization and properties of organoclay reinforced polyurethane nanocomposite coatings. Journal of Plastic Film and Sheeting, 2013, vol. 29, no. 1, pp. 56–77. doi: 10.1177/8756087912448183
  9. Cai D., Jin J., Yusoh K., Rafiq R., Song M. High performance polyurethane/functionalized graphene nanocomposites with improved mechanical and thermal properties. Composites  Science and Technology, 2012, vol. 72, pp. 702–707. doi: 10.1016/j.compscitech.2012.01.020
  10. Yadav S.K., Cho J.W. Functionalized graphene nanoplatelets for enhanced mechanical and thermal properties of polyurethane nanocomposites. Applied Surface Science, 2013, vol. 266, pp. 360–367.doi: 10.1016/j.apsusc.2012.12.028
  11. Jomaa M.H., Seveyrat L., Lebrun L., Masenelli-Varlot K., Cavaill J.Y. Dielectric properties of segmented polyurethanes for electromechanical applications. Polymer, 2015, vol. 63, pp. 214–221. doi: 10.1016/j.polymer.2015.03.008
  12. Wu C., Huang X., Wang G., Wu X., Yang K., Li S., Jiang P. Hyperbranched-polymer functionalization of graphene sheets for enhanced mechanical and dielectric properties of polyurethane composites. Journal of Materials Chemistry, 2012, vol. 22, no. 14, pp. 7010–7019. doi: 10.1039/c2jm16901k
  13. Sadasivuni K.K., Ponnamma D., Kumar B., Strankowski M., Cardinaels R., Moldenaers P., Thomas S., Grohens Y. Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Composites Science and Technology, 2014, vol. 104, pp. 18–25. doi: 10.1016/j.compscitech.2014.08.025
  14. Tantis I., Psarras G.C., Tasis D.Functionalized graphene – poly(vinyl alcohol) nanocomposites: Physical and dielectric properties. Express Polymer Letters, 2012, vol. 6, no. 4, pp. 283–292. doi: 10.3144/expresspolymlett.2012.31
  15. Kanapitsas A., Pissis S. Dielectric relaxation spectroscopy in cross-linked polyurethane ased on polymer polyol. European Polymer Journal, 2000, vol. 36, no. 6, pp. 1241–1250. doi: 10.1016/s0014-3057(99)00167-6
  16. Sinitsin A.N., Zuev V.V. Dielectric relaxation of fulleroid materials filled PA 6 composites andthe study of its mechanical and tribological performance. Materials Chemistry and Physics, 2016, vol. 176, pp. 152–160. doi: 10.1016/j.matchemphys.2016.04.007
  17. Martinez-Rugerio G., Alegria A., Daniloska V., Tomovska R., Paulis M., Colmenero J. Dielectric relaxation of acrylic- polyurethane hybrid materials. Polymer, 2015, vol. 74, pp. 21–29. doi: 10.1016/j.polymer.2015.07.055
  18. Castagna A.M., Fragiadakis D., Lee H.K., Choi T., Runt J. The role of hard segment content on the molecular dynamics of poly(tetramethyleneoxide) – based polyurethane copolymers. Macromolecules, 2011, vol. 44, no. 19, pp. 7831–7836. doi: 10.1021/ma2017138
  19. Starkweather H.W., Avakian P. Conductivity and the electric modulus in polymers. Journal of Polymer Science Part B: Polymer Physics, 1992, vol. 30, no. 6, pp. 637–641. doi: 10.1002/polb.1992.090300614
  20. Havriliak S., Negami S. A complex plane analysis of α-dispersions in some polymer systems. Journal of Polymer  Science Part C, 1966, vol. 14, pp. 99–117.
  21. Havriliak S., Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer, 1967, vol. 8, pp. 161–210.
  22. Hedvig P. Dielectric Spectroscopy of Polymers. Hilger, Bristol, 1977, 430 p.
  23. Angell C.A., Ngai K.L., McKenna G.B., P McMillan.F.,
    Martin S.W. Relaxation in glassforming liquids and amorphous solids. Journal of Applied Physics, 2000, pp. 3113–3157. doi: 10.1063/1.1286035
  24. Plazek D.J., Magil J.H. Physical properties of aromatic
    hydrocarbons. I. Viscous and viscoelastic behavior of 1:3:5‐Tri‐α‐naphthyl benzene. Journal of Chemical Physics, 1966, vol. 45, pp. 3038–3050. doi: 10.1063/1.1728059
  25. Bureau E., Cabot C., Marais S., Saiter J.M.Study of the α-relaxation of PVC, EVA and 50/50 EVA70/PVC blend.
    European Polymer Journal,2005, vol. 41, no. 5, pp. 1152–1158. doi: 10.1016/j.eurpolymj.2004.11.004
  26. Mokeev M.V., Zuev V.V. Rigid phase domain sizes determinationfor poly(urethane-urea)s by solid-state NMR spectroscopy. Correlation with mechanical properties. European Polymer Journal, 2015, vol. 71, pp. 372–379. doi: 10.1016/j.eurpolymj.2015.08.003
  27. Nunn N., Torelli M., McGuire G., Shenderova O. Nanodiamond: a high impact nanomaterial. Current Opinion in Solid State and Materials Science, 2017, vol. 21, pp. 1–9. doi: 10.1016/j.cossms.2016.06.008


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика