doi: 10.17586/2226-1494-2019-19-2-189-195


RESONANT AND NON-RESONANT INTERACTION OF SEMICONDUCTOR NANOCRYSTALS WITH LOCALIZED PLASMONS

N. A. Toropov, A. N. Kamalieva, R. D. Nabiullina


Read the full article  ';
Article in Russian

For citation:
Toropov N.A., Kamalieva A.N., Nabiullina R.D. Resonant and non-resonant interaction of semiconductor nanocrystals with localized plasmons. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 2,  pp. 189–195
(in Russian). doi: 10.17586/2226-1494-2019-19-2-189-195


Abstract

Subject of Research. The paper presents the study of fluorescence enhancement of semiconductor nanocrystals and organic dyes using plasmon resonances. The study is interesting from both basic and applied science point of view. Among recent articles devoted to this topic, the one by Egorushina, et al. was high-profile, and described the case of fluorescence enhancement during nonresonant interaction of molecules and metallic nanoparticles, which is an unusual and poorly studied phenomenon. We made an attempt to perform a similar experimental study for quantum dots. Method. Samples of metallic nanoparticles with plasmon resonances in the visible spectrum region were fabricated using deposition of silver vapor in a high-vacuum chamber. The equivalent layer thickness was 5 nm, the lateral size of the islands was 30–50 nm. CdSe/ZnS semiconductor nanocrystals with a luminescence maximum at a wavelength of 630 nm and CdSe/ZnS nanocrystals with a gradient composition of the ZnS shell and a luminescence maximum at a wavelength of 520 nm were synthesized through the “hot injection” protocol. Solutions of quantum dots were deposited on island films by a spin-coating method. The absorption of the samples was measured on SF-56 spectrophotometer. Fluorescence was measured using RF-5301PC spectrofluorimeter. The luminescence decay kinetics of the samples was also studied. Main Results. As a result, luminescence enhancement during resonant interaction of quantum dots and quenching of luminescence during nonresonant interaction were obtained. The luminescence lifetime decrease characteristic of the Purcell effect was observed in both cases. Practical Relevance. Metal nanoparticles as the resonator will increase the fluorescence quantum yield of various quantum emitters by the Purcell effect.


Keywords: semiconductor nanocrystals, plasmonic nanoparticles, fluorescence, fluorescence lifetime, Purcell effect, spontaneous emission rate

Acknowledgements. The work was supported by ITMO University grant No. 418227. The authors are grateful to the students and staff of ITMO University Center for Physics of Nanostructures of for their assistance.

References
  1. Egorushina E.A., Zhdankina A.A., Klinskikh A.F., Latyshev A.N.,Ovchinnikov O.V. Pursell effect of stationary luminescence of molecules near to metal nanoparticles. Kondensirovannye Sredy i Mezhfaznye Granitsy, 2017, vol. 17, no. 3, pp. 307–318.
    (in Russian) doi: 10.17308/kcmf.2015.17/73
  2. Werschler F., Lindner B., Hinz C., Conradt F., Gumbsheimer P. et al. Efficient emission enhancement of single CdSe/CdS/PMMA quantum dots through controlled near-field coupling to plasmonic bullseye resonators. Nano Letters, 2018, vol. 18, no. 9,
    pp. 5396–5400. doi: 10.1021/acs.nanolett.8b01533
  3. Kamalieva A.N., Toropov N.A., Reznik I.B., Vartanyan T.A. Plasmon-assisted aggregation and spectral modification of the layered rhodamine 6G molecules. Optical and Quantum Electronics, 2016, vol. 48, no. 12, pp. 562. doi: 10.1007/s11082-016-0841-2
  4. Abadeer N.S., Brennan M.R., Wilson W.L., Murphy C.J. Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold nanorods. ACS Nano, 2014, vol. 8, no. 8, pp. 8392–8406. doi: 10.1021/nn502887j
  5. Melnikau D., Esteban R., Savateeva D. et al. Rabi splitting in photoluminescence spectra of hybrid systems of gold nanorods and J-aggregates. Journal of Physical Chemistry Letters, 2016, vol. 7, no. 2, pp. 354–362. doi: 10.1021/acs.jpclett.5b02512
  6. Toropov N.A., Vartanyan T.A. Materials technology and nanotechnologies effect of metallic islet films on aggregation and molecular absorption enhancement of pseudoisocyanine. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2013, vol. 13, no. 6, pp. 112–115.
    (in Russian)
  7. Kamalieva A.N., Toropov N.A., Bogdanov K.V., Vartanyan T.A. Enhancement of fluorescence and Raman scattering in cyanine-dye molecules on the surface of silicon-coated silver nanoparticles. Optics and Spectroscopy, 2018, vol. 124, no. 3, pp. 319–322. doi: 10.1134/S0030400X18030153
  8. Kulakovich O., Strekal N., Yaroshevich A., Maskevich S., Gaponenko S., Nabiev I., Woggon U., Artemyev M. Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Letters, 2002, vol. 2, no. 12, pp. 1449–1452. doi: 10.1021/nl025819k
  9. Pompa P.P., Martiradonna L., Torre A.D., Sala F.D., Manna L., De Vittorio M., Calabi F., Cingolani R., Rinaldi R. Metal-enhanced fluorescence of colloidal nanocrystals with nanoscale control. Nature Nanotechnology, 2006, vol. 1, no. 2,
    pp. 126–130. doi: 10.1038/nnano.2006.93
  10. Purcell E.M. Spontaneous emission probabilities at radio frequencies. Physical Review, 1946, vol. 69, pp. 681.
  11. Li J., Krasavin A.V., Webster L., Segovia P., Zayats A.V., Richards D. Spectral variation of fluorescence lifetime near single metal nanoparticles. Scientific Reports, 2016, vol. 6, no. 1, pp. 21349. doi: 10.1038/srep21349
  12. Krasnok A.E., Slobozhanyuk A.P., Simovski C.R., Tretyakov S.A., Poddubny A.N., Miroshnichenko A.E., Kivshar Y.S., Belov P.A.An antenna model for the Purcell effect. Scientific Reports, 2015, vol. 5, pp. 12956. doi: 10.1038/srep12956
  13. Lu Y., Sokhoyan R., Cheng W., Kafaie S.G., Davoyan A.R., Pala R.A. Thyagarajan K., Atwater H.A. Dynamically controlled Purcell enhancement of visible spontaneous emission in a gated plasmonic heterostructure. Nature Communications, 2017, vol. 8, no. 1, pp. 1631. doi: 10.1038/ s41467-017-01870-0
  14. Novotny L., Hecht B. Principles of Nano-Optics. Cambridge University Press, 2006, 539 p. doi: 10.1017/CBO9780511813535
  15. Toropov N.A., Leonov N.B., Vartanyan T.A. Influence of silver nanoparticles crystallinity on localized surface plasmons dephasing times. Physica Status Solidi B, 2018, vol. 255, no. 3, pp. 1700174. doi: 10.1002/pssb.201700174
  16. Gaponik N., Talapin D.V., Rogach A.L., Hoppe K., Shevchenko E.V.,Kornowski A., Eychmuller A., Weller H. Thiol-capping of CdTe nanocrystals: an alternative to organometallic synthetic routes. Journal of Physical Chemistry B, 2002, vol. 106, no. 29, pp. 7177–7185. doi: 10.1021/jp025541k
  17. Bae W.K., Char K., Hur H., Lee S. Single-step synthesis of quantum dots with chemical composition gradients. Chemistry of Materials, 2008, vol. 20, no. 2, pp. 531–539. doi: 10.1021/cm070754d


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика