doi: 10.17586/2226-1494-2019-19-2-222-228


SPECTRAL AND LUMINESCENT PROPERTIES OF GLASSES DOPED WITH ERBIUM IONS BASED ON 98MgCaSrBaYAl2F14-2Ва(РО3)2

V. A. Klinkov, V. A. Aseev


Read the full article  ';
Article in русский

For citation:

Klinkov V.A., Aseev V.A. Spectral and luminescent properties of glasses doped with erbium ions based on 98MgCaSrBaYAl2F14-2Ва(РО3)2. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 2,  pp. 222–228 (in Russian). doi: 10.17586/2226-1494-2019-19-2-222-228



Abstract

The article is devoted to spectral and luminescent properties of glasses of 98MgCaSrBaYAl2F14-2Ва(PO3)2 composition with ErF3 content 0; 0.1; 0.5 and 1.0 mol.%. Samples of glasses were prepared by high-temperature synthesis in an argon atmosphere. It was found that the matrix of fluoroaluminate glass, has a wide spectral transparency range from 0.2 to 6.7 μm, which indicates the great practical importance of the glassy composition under study as a material for optoelectronics devices. From the infrared transmittance spectra, absorption bands were identified, due to the presence of hydroxyl and phosphate groups, the maxima of which are about 3.0 and 4.7 μm, respectively. It has been established that the fluoroaluminate glassy matrix has a relatively low content of impurities of OH groups. For the samples doped with erbium upon excitation with a wavelength of 487 nm the luminescence spectra were obtained in the spectral range 500–900 nm. The nature of these bands is explained on the basis of a simplified energy diagram of erbium ion in a glassy matrix. Analysis of the concentration dependences of the integral intensities of the luminescence bands was also carried out, in the course of which it was found that a sample containing 0.1 mol. % ErF3 has the maximum efficiency. The 2H11/24I15/2 radiative transition was found to be the one mostly exposed to concentration quenching.


Keywords: absorption spectra, fluoroaluminate glasses, luminescent properties, luminescence quenching

Acknowledgements. The reported study was funded by RFBR according to the research project No. 18-58-00043.

References
  1. Przhevuskii A.K., Nikonorov N.V. Condensed Laser Mediums. Lecture Course. St. Petersburg, SPbSU ITMO Publ., 2009. (in Russian)
  2. Henderson-Sapir O. Development of Dual-Wavelength Pumped Mid-Infrared Fibre Lase. PhD Thesis, University of Adelaide, 2015.
  3. Rasool S.N. et al. Spectroscopic properties of Er3+-doped phosphate based glasses for broadband 1.54 μm emission. Journal of Molecular Structure, 2017, vol. 1130, pp. 837–843. doi: 10.1016/j.molstruc.2016.10.090
  4. Joshi P., Shen S., Jha A. Er 3+-doped boro-tellurite glass for optical amplification in the 1530-1580 nm. Journal of Applied Physics, 2008, vol. 103, no. 8, pp. 083543. doi: 10.1063/1.2908873
  5. Som T., Karmakar B. Nephelauxetic effect of low phonon antimony oxide glass in absorption and photoluminescence of rare-earth ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2011, vol. 79, no. 5, pp. 1766–1782. doi: 10.1016/j.saa.2011.05.054
  6. Karaksina E.V., Shiryaev V.S., Kotereva T.V., Velmuzhov A.P., Ketkova L.A., Snopatin G.E. Preparation of high-purity Pr3+ doped Ge–As–Se–In–I glasses for active mid-infrared optics. Journal of Luminescence, 2016, vol. 177, pp. 275–279. doi: 10.1016/j.jlumin.2016.05.005
  7. Tang Z. et al. Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass. Optical Materials Express, 2015, vol. 5, no. 4, pp. 870–886. doi: 10.1364/ome.5.000870
  8. Huang F., Liu X., Hu L., Chen D. Spectroscopic properties and energy transfer parameters of Er 3+-doped fluorozirconate and oxyfluoroaluminate glasses. Scientific Reports, 2014, vol. 4, p. 5053. doi: 10.1038/srep05053
  9. Ehrt D. Phosphate and fluoride phosphate optical glasses–properties, structure and applications. Physics and Chemistry of Glasses-European Journal of Glass Science and Technology Part B, 2015, vol. 56, no. 6, pp. 217–234. doi: 10.13036/17533562.56.6.217
  10. Wade S.A. Temperature Measurement using Rare Earth Doped Fibre Fluorescence. PhD Thesis, Victoria University, 1999.
  11. Rai V.K., Rai A. Temperature sensing behavior of Eu 3+ doped tellurite and calibo glasses. Applied Physics B, 2007, vol. 86, no. 2, pp. 333–335. doi: 10.1007/s00340-006-2445-1
  12. Mizuno S. et al. Spectroscopic properties of Er doped and Er, Nd codoped fluoride glasses under simulated sunlight illumination. Optical Materials, 2011, vol. 33, no. 12, pp. 1958–1963.
  13. Lan Y., Mei B., Li W., Xiong F., Song J. Preparation and scintillation properties of Eu2+: CaF2 scintillation ceramics. Journal of Luminescence, 2018, vol. 208, pp. 183–187. doi: 10.1016/j.jlumin.2018.12.047
  14. Bocharova T.V., Sysoev D.S., Vlasova A.N., Maslennikova I.G., Tagil'tseva N.O. Radiation phenomena in microinhomogeneous structures of flouroaluminate glass-like materials. Physics of the Solid State, 2014, vol. 56, no. 2, pp. 353–358.
  15. Zaytseva S.V., Aseev V.A., Kolobkova E.V., Nikonorov N.V. Spectral and luminescent properties of fluorophosphates glasses doped with ytterbium and erbium. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2014, no. 4, pp. 62–68. (in Russian)
  16. Alekseev N.E. et al. Influence of the concentration quenching and of water on the energy characteristics of neodymium-activated glasses. Soviet Journal of Quantum Electronics, 1975, vol. 4, no. 9, pp. 1111–1114. doi: 10.1070/QE1975v004n09ABEH011461
  17. Aseev V.A., Zhukova M. N., Nikonorov N. V., Przhevuskii A. K., Fedorov Yu. K., Fedorova E.M. Effect of OH-groups on the spectral-luminescent properties of highly concentrated ytterbium-erbium glasses. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2006, no. 34, pp. 60–67. (in Russian)
  18. Ragin T., Zmojda J., Kochanowicz M. et al. Energy transfer mechanisms in heavy metal oxide glasses doped with lanthanide ions. Proc. SPIE, 2016, vol. 10031. doi: 10.1117/12.2247810
  19. Wang P.F., Li W.N., Peng B., Lu M. Effect of dehydration techniques on the fluorescence spectral features and OH absorption of heavy metals containing fluoride tellurite glasses. Journal of Non-Crystalline Solids, 2012, vol. 358, no. 4, pp. 788–793. doi: 10.1016/j.jnoncrysol.2011.12.029
  20. Ragin T., Zmojda J., Kochanowicz M. et al. Enhanced mid-infrared 2.7 μm luminescence in low hydroxide bismuth-germanate glass and optical fiber co-doped with Er3+/Yb3+ ions. Journal of Non-Crystalline Solids, 2017, vol. 457, pp. 169–174. doi: 10.1016/j.jnoncrysol.2016.12.001
  21. Catunda T., Nunes L.A.O., Florez A. et al. Spectroscopic properties and upconversion mechanisms in Er 3+-doped fluoroindate glasses. Physical Review B, 1996, vol. 53, no. 10, pp. 6065–6070. doi: 10.1103/physrevb.53.6065
  22. Lai B., Feng L., Wang J., Su Q. Optical transition and upconversion luminescence in Er3+ doped and Er3+–Yb3+ co-doped fluorophosphate glasses. Optical Materials, 2010, vol. 32, no. 9, pp. 1154–1160. doi: 10.1016/j.optmat.2010.03.023
  23. Babu P., Seo H.J., Kesavulu C.R. et al. Thermal and optical properties of Er3+-doped oxyfluorotellurite glasses. Journal of Luminescence, 2009, vol. 129, no. 5, pp. 444–448. doi: 10.1016/j.jlumin.2008.11.014
  24. Goncalves A., Zanuto V.S., Flizikowski G.A.S. et al. Luminescence and upconversion processes in Er3+-doped tellurite glasses. Journal of Luminescence, 2018, vol. 201, pp. 110–114. doi: 10.1016/j.jlumin.2018.04.031


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2025 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика