doi: 10.17586/2226-1494-2019-19-2-377-379


FLUORESCENCE ENHANCEMENT OF SCANDIUM COMPOUNDS WITH
2-NAPHTHOYLTRIFLUOROACETONE IN WATER SOLUTION

L. Y. Mironov


Read the full article  ';
Article in Russian

For citation:
Mironov L.Yu. Fluorescence enhancement of scandium compounds with 2-naphthoyltrifluoroacetone in water solution. Scientific and Technical Journal of Information Technologies, Mechanics and Optics, 2019, vol. 19, no. 2,  pp. 377–379 (in Russian). doi: 10.17586/2226-1494-2019-19-2-377-379


Abstract

The fluorescence effect of the scandium compounds with 2-naphthoyltrifluoroacetone  on solvent composition was studied. The earlier unknown increase in fluorescence quantum yield of scandium diketonate was observed under the change of solvent from dimethylformamide to water. The increase in quantum yield of fluorescence was interpreted as the consequence of scandium compounds aggregation into nanoparticles in water environment.


Keywords: fluorescence, nanoparticles, scandium diketonates

Acknowledgements. The reported study was funded by the RFBR according to the research project No. 18-33-01044.

References
  1. Wolfbeis O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 2015, vol. 44, no. 14, pp. 4743–4768. doi: 10.1039/c4cs00392f
  2. Peng H.S., Chiu D.T. Soft fluorescent nanomaterials for biological and biomedical imaging. Chemical Society Reviews, 2015, vol. 44, no. 14, pp. 4699–4722. doi: 10.1039/C4CS00294F
  3. Reisch A., Klymchenko A.S. Fluorescent polymer nanoparticles based on dyes: seeking brighter tools for bioimaging.
    Small, 2016, vol. 12, no. 15, pp. 1968–1992. doi: 10.1002/smll.201503396
  4. Dudar S.S., Sveshnikova E.B., Ermolaev V.L. Energy transfer from Eu(III) and Tb(III) complexes to dyes in their mixed nanostructures. I. Optics and Spectroscopy, 2008, vol. 104, no. 2, pp. 225–234. doi: 10.1007/s11449-008-2013-x
  5. Wen X., Li M. et. al. Colloidal nanoparticles of a Europium complex with enhanced luminescent properties. Langmuir, 2008, vol. 24, no. 13, pp. 6932–2936. doi: 10.1021/la800903s
  6. Härmä H., Graf C., Hänninen P. Synthesis and characterization of core-shell europium(III)-silica nanoparticles. Journal of Nanoparticles Research, 2008, vol. 10, no. 7, pp. 1221–1224. doi: 10.1007/s11051-008-9380-5
  7. Mironov L.Yu., Parfenov P.S., Shurukhina A.V. et al. Delayed fluorescence of dyes sensitized by Eu3+ chelate nanoparticles. Journal of Physical Chemistry C, 2017, vol. 121, no. 36, pp. 19958−19965. doi: 10.1021/acs.jpcc.7b03648
  8. Magde D., Wong R., Seybold P.G. Fluorescence quantum yields and their relation to lifetimes of rhodamine 6G and fluorescein in nine solvents: improved absolute standards for quantum yields. Photochemistry and Photobiology, 2002, vol. 75, no. 4, pp. 327–334.doi: 10.1562/0031-8655(2002)0750327FQYATR2.0.CO2
  9. Mei J., Leung N.L.C., Kwok R.T.K. Aggregation-induced emission: together we shine, united we soar. Chemical
    Review
    , 2015, vol. 115, no. 21, pp. 11718–11940. doi: 10.1021/acs.chemrev.5b00263


Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License
Copyright 2001-2024 ©
Scientific and Technical Journal
of Information Technologies, Mechanics and Optics.
All rights reserved.

Яндекс.Метрика